欢迎来到天天文库
浏览记录
ID:36805288
大小:809.13 KB
页数:15页
时间:2019-05-15
《《平面向量》知识点归纳总结》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一章平面向量2.1向量的基本概念和基本运算16、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为的向量.单位向量:长度等于个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.⑶三角形不等式:.⑷运算性质:①交换律:;②结合律:;③.⑸坐标运算:设,,则.18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设
2、,,则.设、两点的坐标分别为,,则.19、向量数乘运算:⑴实数与向量的积是一个向量的运算叫做向量的数乘,记作.①;②当时,的方向与的方向相同;当时,的方向与的方向相反;当时,.⑵运算律:①;②;③.⑶坐标运算:设,则.20、向量共线定理:向量与共线,当且仅当有唯一一个实数,使.设,,其中,则当且仅当时,向量、共线.2.2平面向量的基本定理及坐标表示21、平面向量基本定理:如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使.(不共线的向量、作为这一平面内所有向量的一组基底)22、分点坐标公式:设点是线段上的一点,、
3、的坐标分别是,,当时,点的坐标是.(当2.3平面向量的数量积23、平面向量的数量积(两个向量的数量积等于它们对应坐标的乘积的和。):⑴.零向量与任一向量的数量积为.⑵性质:设和都是非零向量,则①.②当与同向时,;当与反向时,;或.③.⑶运算律:①;②;③.⑷坐标运算:设两个非零向量,,则.若,则,或.设,,则.设、都是非零向量,,,是与的夹角,则.知识链接:空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.1、直线的方向向量和平面的法向量⑴.直线的方向向量: 若A、B是直线上的任意两点,则
4、为直线的一个方向向量;与平行的任意非零向量也是直线的方向向量.⑵.平面的法向量: 若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果,那么向量叫做平面的法向量.⑶.平面的法向量的求法(待定系数法):①建立适当的坐标系.②设平面的法向量为.③求出平面内两个不共线向量的坐标.④根据法向量定义建立方程组.⑤解方程组,取其中一组解,即得平面的法向量.(如图)1、用向量方法判定空间中的平行关系⑴线线平行设直线的方向向量分别是,则要证明∥,只需证明∥,即. 即:两直线平行或重合两直线的方向向量共线。⑵线面平行①(法一)设直线的方向向量是,平面的法向量
5、是,则要证明∥,只需证明,即.即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.⑶面面平行若平面的法向量为,平面的法向量为,要证∥,只需证∥,即证.即:两平面平行或重合两平面的法向量共线。3、用向量方法判定空间的垂直关系⑴线线垂直设直线的方向向量分别是,则要证明,只需证明,即.即:两直线垂直两直线的方向向量垂直。⑵线面垂直①(法一)设直线的方向向量是,平面的法向量是,则要证明,只需证明∥,即.②(法二)设直线的方向向量是,平面内的两个相
6、交向量分别为,若即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直。⑶面面垂直若平面的法向量为,平面的法向量为,要证,只需证,即证.即:两平面垂直两平面的法向量垂直。4、利用向量求空间角⑴求异面直线所成的角已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为, 则⑵求直线和平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角②求法:设直线的方向向量为,平面的法向量为,直线与平面所成的角为,与的夹角为, 则为的余角或的补角的余角.即有:⑶求二面角①定
7、义:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面二面角的平面角是指在二面角的棱上任取一点O,分别在两个半平面内作射线,则为二面角的平面角.如图:OABOABl②求法:设二面角的两个半平面的法向量分别为,再设的夹角为,二面角的平面角为,则二面角为的夹角或其补角根据具体图形确定是锐角或是钝角:◆如果是锐角,则,即;◆如果是钝角,则,即.5、利用法向量求空间距离⑴点Q到直线距离若Q为直线外的一点,在直线上,为直线的方向向量,=,则点Q到直线距
8、离为⑵点A到平面的距离若点P为平面外一点,点M为平面内任一点,平面的法向量为,则P到平面的距离就等于在法向量
此文档下载收益归作者所有