欢迎来到天天文库
浏览记录
ID:36799561
大小:2.80 MB
页数:82页
时间:2019-05-15
《基于模糊神经网络的斜轧建模研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、的模糊神经网络,及其输入参数的隶属函数。训练数据通过有限元建模和实验数据得到。因此,主要工作包括以下几个方面:(1)在深入了解斜轧无缝钢管生产工艺和理解斜轧理论的基础上,运用ANSYS有限元软件对其进行了建模仿真,采集到了模糊神经网络所需的样本数据;(2)建立无缝钢管斜轧过程的模糊神经网络,选取了隶属函数,将样本数据分成两组:训练数据和检验数据。(3)N用有限元模拟得到的数据对模糊神经网络进行训练。(4)通过用铝管代替钢管进行斜轧规律研究,搭建了实验平台,验证了有限元模拟斜轧的准确性和可靠性。通过基于模糊神经网络斜轧建模研究,建立了工艺参数与质量参数的关系,对斜轧工艺具有指导意义。
2、同时,得到的模糊神经网络的数学模型,为实现斜轧过程自动控制奠定基础。关键词:斜轧;模糊控制;模糊神经网络;建模ABSTRACTCross—rollingisanimportantproductiontechnologyintheproductionofseamlesspipe.Ithasbecomeabasictechnologyandakeymeansforallkindsofseamlesspipeproductionafter100years’development.Butitisoftendifficultyforpeopletobuildtheexactmathmodel
3、byusingclassicmechanicsapproach.ByusingFEM,thecalculatingprecisionincross—rollingprocessishigherthanusingothermethods.Butthesimulationtimeistoolongtobeon-linecontrolmathematicsmodels.ItiSenforcedtocarryonthedevelopmentandresearchonmathematicsmodelsofartificialneuralnet.Thisprojectisastudyofcro
4、ss—rollingprocesstopipe—elongatingoperationintheproductionofseamlesspipe.Themappingrelationshipbetweentechnicalparametersandqualityparametersisobtainedbycalculatingparametersincross.rollingprocess。suchasdeformationstate,mechanicalstate,pipequalityect.Andthefuzzyneuralnetworkandmembershipfuncti
5、onofinputparametersincross.rollingprocessareestablished.TrainingdataaregainedthroughFEMmodelingandexperimentaldata.Therefore,themainworkincludesthefollowingaspects:(1)Basedonadeepknowledgeofproductiontechnologyofcross‘rollingseamlesspipeandcross.rollingtheory,sampledatafortheneedoffuzzyneuraln
6、etworkarecollectedbyANSYS/LS—DYNAformodelingandSimulation.(2)Establishfuzzyneuralnetworkaboutcross—rollingprocessofseamlesspipe;selectmembershipfunction;anddividesampledateintotwogroups:trainingdateandtestingdate.(3)TrainfuzzyneuralnetworkbyusingexperimentaldataandFEMsimulationdata.(4)Buildane
7、xperimentalplatformandverifytheveracityandreliabilityoffinite.elementmodelingofcross.rollingthroughstudyingtheprincipleofcross—rollingbyusingaluminumpipeinsteadofsteelpipe.Basedonthemodelingresearchonfuzzyneuralnetworkofcross—rolling,th
此文档下载收益归作者所有