欢迎来到天天文库
浏览记录
ID:36733326
大小:33.50 KB
页数:20页
时间:2019-05-14
《离散流变模型》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、离散元构造面流变模型2004年5月31日 摘 要 建立适用于离散元方法的岩体构造面流变模型,在传统的离散元基本框架的基础上,引入积分型流变本构方程和粘性等效接触力增量并嵌入到离散元的计算流程中,成功模拟了离散介质结构面的流变性质。通过对一个简单算例计算值和理论解的对比,验证了本模型有良好的精度,具有应用于岩质高边坡和离散块体系统流变分析的重要前景。 关键词 离散单元法,流变,接触 离散单元法(DEM)是一种适用于模拟离散介质的数值方法。自Cundall[1]于70年代提出以来,离散元方
2、法在岩石介质数值分析中得到了迅速的发展[2,3],它与有限元、DDA等方法一起,成为岩体变形与稳定分析的有力工具。由于离散元方法既能模拟接触面的大变形,又能模拟块体内部的连续变形,它特别适合于模拟被节理、断层等构造面切割而成的不连续岩体介质。大量工程实践表明,岩体系统的变形和稳定问题与时间因素密切相关,在长期荷载持续作用下,其流变性态即使在不太高的应力水平下也十分明显,甚至成为最终变形破坏的主导因素。因此,在进行岩质块体结构的变形和稳定分析时,考虑介质的流变属性是十分必要的。当岩块本身坚硬完整时,
3、其时效变形主要体现在节理、裂隙等构造面的流变行为上。 离散单元法由于计算时步很小,计算中所施加的阻尼主要是加快收敛速度,不能直接用于考虑较长时间效应的流变计算,作为采用离散元模型分析岩体流变效应的初步成果,本文建立了分析构造面流变的可变形体离散元数值模型。1.离散单元法基本原理简介 可变形体离散单元法的突出特点是它不仅能考虑离散块体本身的变形,又能同时模拟接触面的张开和滑移等力学行为,由于采用显式时步迭代,对应于应力增量,本构方程采用增量形式,离散元计算方法对材料非线形本构关系和大变形问题具有
4、内在的适应性。 如图1(a)所示,岩体被裂隙、断层等构造面切割成块体系统。构造面采用法向和切向弹簧来模拟,构造面的接触力Fc可以根据构造面的法向和切向变形,通过接触弹簧的力-变形关系来确定。由于在不平衡力作用下各个块体不断运动,这些构造面上的接触力的大小、位置、方向均在不断变化,需要在计算过程中不断搜索、判断,这是离散元法的重要技术,正在不断地改进中[1],具体内容可以参见文献[1,3]。 可变形体离散元法中,每个块体本身为可变形体,它的变形通过将块体内部划分成为三角形常应变差分单元模拟,如图
5、1(b)所示,网格节点N为差分单元B1,B2…Bn的公共节点。三角形差分单元把惯性质量平均分配给其三个节点,即把虚线所围起的多边形的质量分配给N节点。因为每个三角形差分单元的应力、应变均为常量,可以由三角形各节点的位移和块体本身的本构关系来确定,再通过积分可以得到节点弹性力。 离散元计算采用显式时步迭代的方法,静力问题亦采用类似动力分析的松弛迭代求解,阻尼力Fd作为一种吸收能量加速系统收敛的手段被引入方程。离散元系统每个网格节点都应满足Newton第二定律,即 m=Fe+Fc+Fd+Fb+Fg
6、 (1) 其中m为网格节点所分配的质量, 是该节点的加速度。Fe,Fc,Fd,Fb,Fg分别为作用在该节点上的弹性力,接触力,阻尼力,给定的外力和重力。 离散元法用显式时步迭代进行平衡计算,对于每一计算时步,将对所有节点进行循环,计算步骤(如图2虚框所示)如下: (a)在迭代的初始时刻,设定边界条件和初始条件,由于边界条件或外加力等的变化,系统处于不平衡状态,开始进行平衡迭代; (b)根据上一个时步的结果或初始条
7、件、边界条件,可得到本时步初节点的位移、速度、坐标等状态量,如果是该节点的运动是给定的边界条件,则跳过(c)和(d),直接得到新的状态量。否则, (c)根据节点的状态,利用各种力-位移关系分别确定作用在该节点上的各种作用力。 (d)应用动力平衡方程式(1),求出本时步该节点的加速度,再通过积分得到时步末的速度和位移,并更新坐标,得到新的状态量。 (e)对每一时步内的每一节点,重复以上(b)~(d),由于体系内部的阻尼力将不断耗散系统能量,迭代将收敛到静力问题的解。在静力分析中,为尽快耗散能
8、量,可以采用自适应阻尼,对于离散单元法更详细的论述,可参见文献[1,2,3]。 2.岩块构造面流变数值模型 作为研究离散元流变模型的第一步,针对许多情况下,由于岩块本身的流变变形相对于构造面流变变形小,我们首先建立构造面流变变形的分析模型。构造面变形可以分为瞬时变形和流变粘性时效变形(下称粘性变形)两部分。我们采用最简单的Kelvin模型(一对并联的弹簧和阻尼器)来模拟粘性变形部分,其他复杂的流变模型也可以用本文的方法类似地引入离散元方法中。若从t=0时刻开始,构造面上作用有
此文档下载收益归作者所有