2.4.1平面向量数量积 (2)

2.4.1平面向量数量积 (2)

ID:36722927

大小:458.00 KB

页数:23页

时间:2019-05-10

2.4.1平面向量数量积 (2)_第1页
2.4.1平面向量数量积 (2)_第2页
2.4.1平面向量数量积 (2)_第3页
2.4.1平面向量数量积 (2)_第4页
2.4.1平面向量数量积 (2)_第5页
资源描述:

《2.4.1平面向量数量积 (2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、平面向量的数量积定义:一般地,实数λ与向量a的积是一个向量,记作λa,它的长度和方向规定如下:(1)

2、λa

3、=

4、λ

5、

6、a

7、(2)当λ>0时,λa的方向与a方向相同;当λ<0时,λa的方向与a方向相反;特别地,当λ=0或a=0时,λa=0运算律:设a,b为任意向量,λ,μ为任意实数,则有:①λ(μa)=(λμ)a②(λ+μ)a=λa+μa③λ(a+b)=λa+λb已知两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角。OBAθ向量的夹角当θ=0°时,a与b同向;OAB当θ=180°时,a与b反向;OABB当θ=90°时,称a与

8、b垂直,记为a⊥b.OAab我们学过功的概念,即一个物体在力F的作用下产生位移s(如图)θFS力F所做的功W可用下式计算W=

9、F

10、

11、S

12、cosθ其中θ是F与S的夹角从力所做的功出发,我们引入向量“数量积”的概念。已知两个非零向量a与b,它们的夹角为θ,我们把数量

13、a

14、

15、b

16、cosθ叫做a与b的数量积(或内积),记作a·ba·b=

17、a

18、

19、b

20、cosθ定规定:零向量与任一向量的数量积为0。注意:向量的数量积是一个数量。向量的数量积是一个数量,那么它什么时候为正,什么时候为负?思考:a·b=

21、a

22、

23、b

24、cosθ当0°≤θ<90°时a·b为正;当90°<θ≤180°时a·b为负。

25、当θ=90°时a·b为零。重要性质:设是非零向量,方向相同的单位向量,的夹角,则特别地OABθabB1解:a·b=

26、a

27、

28、b

29、cosθ=5×4×cos120°=5×4×(-1/2)=-10例2已知

30、a

31、=5,

32、b

33、=4,a与b的夹角θ=120°,求a·b。a·b的几何意义:OABθ

34、b

35、cosθabB1等于的长度与的乘积。θO投影OθO练习:1.若a=0,则对任一向量b,有a·b=0.2.若a≠0,则对任一非零向量b,有a·b≠0.3.若a≠0,a·b=0,则b=04.若a·b=0,则a·b中至少有一个为0.5.若a≠0,a·b=b·c,则a=c6.若a·b=a·c,则b

36、≠c,当且仅当a=0时成立.7.对任意向量a有√×××××√二、平面向量的数量积的运算律:数量积的运算律:其中,是任意三个向量,注:例3:求证:(1)(a+b)2=a2+2a·b+b2;(2)(a+b)·(a-b)=a2-b2.证明:(1)(a+b)2=(a+b)·(a+b)=(a+b)·a+(a+b)·b=a·a+b·a+a·b+b·b=a2+2a·b+b2.例3:求证:(1)(a+b)2=a2+2a·b+b2;(2)(a+b)·(a-b)=a2-b2.证明:(2)(a+b)·(a-b)=(a+b)·a-(a+b)·b=a·a+b·a-a·b-b·b=a2-b2.例4例

37、5小结:1.2.可用来求向量的模3.投影作业:4、已知a、b都是非零向量,且a+3b与7a–5b垂直,a–4b与7a–2b垂直,求a与b的夹角。解:∵(a+3b)⊥(7a–5b)(a–4b)⊥(7a–2b)∴(a+3b)·(7a–5b)=0且(a–4b)·(7a–2b)=0即7a·a+16a·b–15b·b=07a·a-30a·b+8b·b=0两式相减得:2a·b=b2,代入其中任一式中得:a2=b2cosθ=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。