《溶菌酶的作用机制》PPT课件

《溶菌酶的作用机制》PPT课件

ID:36719882

大小:217.59 KB

页数:31页

时间:2019-05-10

《溶菌酶的作用机制》PPT课件_第1页
《溶菌酶的作用机制》PPT课件_第2页
《溶菌酶的作用机制》PPT课件_第3页
《溶菌酶的作用机制》PPT课件_第4页
《溶菌酶的作用机制》PPT课件_第5页
资源描述:

《《溶菌酶的作用机制》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、DetermingtheMechanismofLysozymeAction溶菌酶的作用机制制作:靳晶溶菌酶是如何被发现的?亚历山大·弗莱明(AlexanderFleming),1881年8月6日出生于苏格兰艾尔郡洛奇菲尔德。他是苏格兰低地农民的后裔,家境贫寒。因发现了青霉素以及它对多种传染性疾病的治疗作用,荣获1945年诺贝尔生理学或医学奖。1922年的一天,正在感冒的英国细菌学家AlexanderFleming发现,把一些鼻粘液加入细菌的培养基后会引起细胞的溶解。而这种存在于鼻粘液中的能杀死细菌的重要物质被认为是一种酶,Fleming命名其为溶菌酶(Lys

2、ozyme)。起初,Fleming对这种有杀死细菌活性的物质的实验不过是出于一种兴趣。但在目睹了一战中大量的士兵死于外伤感染之后,Fleming开始试图倾其毕生来寻找一种能够有效杀死细菌,同时又能对人类保持相对的无毒性的药剂。不象Fleming在1928年发现的青霉素(penicillin),溶菌酶不能证明有临床价值。但是在酶机制的研究学习方面,溶菌酶扮演了一个很重要的角色。在1965年,DavidPhillips和他在牛津的同事以0.2nm分辨率的X射线晶体(X-raycrystallography)结构分析法阐明了溶菌酶的三维结构(tertiarystr

3、ucture)。溶菌酶是从鸡蛋清中提炼的,蛋清里的溶菌酶可以保护胚胎在发育过程中免受细菌的感染。溶菌酶溶解细菌是通过水解细菌细胞壁多糖(thepolysaccharideofthebacterialcellwall)的糖苷键(glycosidicbonds)。而敏感细菌[革兰氏阳性细菌(gram-positivebacteria)]的细胞壁多糖是N-乙酰氨基葡糖(N-acetylglucosamine,NAG)-N-乙酰氨基葡糖乳酸(N-acetylmuramicacid,NAM)的共聚物,其中的NAG及NAM通过β-1,4糖苷键而交替排列。溶菌酶相对分子质

4、量为14.6X103,由129个氨基酸组成的单肽链蛋白质,含有4对二硫键。溶菌酶分子近椭圆形,大小为4.5nmX3.0nmX3.0nm。它的构象比较复杂,α螺旋仅占25%,在分子的一些区域有伸展着的β片层构象。溶菌酶是一种葡糖苷酶,能催化水解NAM的C1和NAG的C4之间的糖苷键,但不能水解NAGC1和NAMC4之间的β(1-4)糖苷键。几丁质是甲壳类动物甲壳中所含的多糖,仅由NAG残基通过β(1-4)糖苷键连接而成,几丁质也是溶菌酶的底物。溶菌酶的内部几乎全部是非极性的(nonpolar)。疏水的相互作用在溶菌酶的折叠构象中起重要作用。在溶菌酶分子的表面,

5、有一个比较深的裂缝,其大小恰好能容纳多糖底物的6个单糖,这是溶菌酶的活性部位。底物与酶结合后,酶催化哪一个键水解呢?用大小不同的NAG寡聚体作底物测定被溶菌酶水解的相对速率,结果发现,少于4个糖的寡聚体水解速率甚小,当由四聚体增加到五聚体时,水解速率猛增500倍,五聚体增加到六聚体,速率增加近8倍,六聚体增加到八聚体,速率不再变化。这种情况与X射线晶体结构分析结果一致,活性部位所在的裂缝(cleft)正好被6个糖残基所装满。(NAG)3是溶菌酶的竞争抑制剂,因此A-B,B-C糖苷键均不可能是被水解的键。C环的空间对NAM来说体积太大,只能是NAG。C-D也不

6、可能成为裂解的部位,而NAM不能适合到部位C中,进一步排除了另外一个裂解部位:E-F键。胞壁多糖是一个NAM和NAG交替的高聚物,从而NAM不能占据部位C时也就不能占据部位E。细菌的细胞壁多糖恰好具有NAM-NAG键,所以水解部位只能发生在D-E之间。用X射线晶体结构分析法研究了竞争性抑制剂(NAG)3仅仅占据了大约半个裂缝。从活性部位的几何大小看出酶的最小底物应该是(NAG)6。实验中用(NAG)6为底物,确实能被酶迅速水解。酶活性部位刚好能容纳一个六糖分子,A、B、C、D、E、F表示6个糖残基的位置,只是第4个糖残基D环因空间的原因必须由正常的椅式变形为

7、能量较高的半椅式或“沙发”构造。因此糖苷键的稳定性减低,键就容易从这里断裂。进一步的问题是酶的催化作用,究竟键是在糖苷键原子的哪一侧被裂解的?回答这个问题可以在H218O溶液中酶促水解底物(NAG)6,发现只有D糖C1上含有18O,而E糖的C4羟基只含普通的O,由此可知这个键断裂在D糖基的C1和E残基的糖苷键的O之间。分析D-E键周围的微环境,最活泼的基团显然是Asp52和Glu35,它们分别位于糖苷键两侧。Asp52位于糖苷键的一侧,而Glu35在另一侧。这两个酸性侧链具有明显不同的微环境。Asp52是在一个明显的极性环境中,在那里它在一个复杂的氢键网络中

8、起着氢键受体的作用。相反,Glu35位于非极性区。这

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。