欢迎来到天天文库
浏览记录
ID:36619983
大小:274.26 KB
页数:5页
时间:2019-05-13
《基于小生境遗传模拟退火算法的液压集成块布局优化》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、机床与液压Dec.2012HydromechatronicsEngineeringVo1.40No.24DOI:10.3969/j.issn.1001-3881.2012.24.O11AllocationOptimizationofHydraulicManifoldBlockBasedonNichingGeneticSimulatedAnnealingAlgorithmZHANGLijie,ZHANGYanhui,LIYukunHebeiKeyLaboratoryofHeavyMachineryFluidPowerTra
2、nsmissionandControl,YanshanUnweni@,Qinhuangdao066004,ChinaAbstract:Allocationoptimizationofhydraulicmanifoldblock(HMB)isthefoundationforoptimi.zationdesignofHMB.Thispaperestablishesamathematicalmodelofmulti.objectiveoptimiza.tionwithperformanceconstraintsaccordin
3、gtothestructuralfeatureofHMBanddesigncharac.ter.Thenthemathematicalmodelwassolvedbynichinggeneticsimulatedannealingalgorithm(NGSA).TheexamplegiveninthispaperindicatesthatthelayoutoptimizationofHMBcanbewellcompletedbyNGSA,whichprovidesareferenceforallocationdesign
4、.Keywords:hydraulicmanifoldblock,optimizationdesign,nichinggeneticsimulatedannealinga1.gorithmcreaseglobalsearchabilityandtheconvergence1.Introductionspeed[3].ThepaperpresentsahybridalgorithmcombiningGAwithSA,whichsolvesthesingleob.OptimizationdesignofHMBisacompl
5、icatedjectiveoptimizationproblemsofintegratedblockprocess.Andspacelayoutisthebasisofhydraulicchannelsnetworkl4I.Combine(1thebasicnichewithmanifoldblockdesign.AtpresentdesignersmostlyGAandSA,ahybridalgorithmisproposed.Thisa1.dependonexperiencesandspaceimaginationo
6、rsim—gorithmcanmaintainthesolutionsdiversity.Inaddi.plytheapplicationofasinglealgorithmsuchasge—tion,itcanenhancetheconvergencespeedandtheneticalgorithm(GA)orsimulatedannealing(SA)qualityofsolutioneffectively.Nevertheless,duetotoSOlVethelayoutproblem[1—2].Thespac
7、elayoutthishybridalgorithmdoesnotconsidertheconstraintresultcannotguaranteetomeettheoptimalperform.rulesanddesignexperience,applicationresultsofanceindexbecauseofthediversityofallocationde.thishybridalgorithmshowthatitmaynotsatisfyac-signandthecomplexityofsolutio
8、nprocedure.tualrequirementofengineeringapplications.TothisGAshowsitsstrongglobaloptimalcharacteristicrespect,bycombiningthenichinggeneticsimulatedwhereasitscon
此文档下载收益归作者所有