欢迎来到天天文库
浏览记录
ID:36465877
大小:2.33 MB
页数:73页
时间:2019-05-10
《轻卡车身模态分析及其结构优化》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、上海交通大学;上海工程技术大学硕士学位论文轻卡车身模态分析及其结构优化姓名:李学修申请学位级别:硕士专业:车辆工程指导教师:黄虎;刘长虹20070101态频率提高了16%,质量减轻了8Kg,验证了DOE分析方法的可行性。(4)车身结构的拓扑优化。通过DOE分析方法对板厚参数进行优化后,又建立了车身的拓扑优化模型对车身的结构进行形状优化,根据优化得到的拓扑形状提出了在顶盖和后围覆盖件冲压“X”型加强筋的方案。通过上述工作成功地解决了轻卡车身存在的振动和刚度问题,相信随着车身改进设计研究的不断深入,
2、试验和计算机研究手段的发展,DOE分析与拓扑优化相结合的方法在车身结构优化的研究中将发挥更大的作用。关键词:模态分析,DOE,拓扑优化,有限元分析ⅡLIGHT.TRUCKCABMoDES丑嗡PEANALYSISANDSTRUCTUREoPT耵垤IZATIoNFirst,thepaperpresentssomebasicideas,applicationsanddevelopmentinmodeanalysis,DOEanalyisandtopologyoptimizationfiled.Then
3、thesimulationmodelofthelight-truckisbuiltandsomeresearchworkaboutmodelingmethodandelementqualitycriteriaisdone.DOEanalysisisbeenfirstlyusedinautobodystructureoptimization.Atlast,amodelfortopologyanalysisisbuiltandthetopologyresultsareusedinframeoptim
4、ization.Themainresearchworksarefocusedinthefollowingaspects:1.Modelingofthelight-truckcab.Themodeloflight-truckcabisbuiltandkeypointsofmodelingarepointedout.2.Modeshapeandstiffnessanalysis.TheCAEmodelisperformanced,modefrequencyandstiffnessofthecabis
5、computed.Thesilmulasionresultspresentthecabresonancemaybecausedandthestiffnessofthecabisnotenough.Thetargetofoptimizationisbuilttoincreasethemodefrequencyandstiffnessofthecab.3.OptimizationofthecabthicknessbyDOEanalysis.ByDOEanalysis,thebestwaytoincr
6、easethemodefrequencyispointout.Theoptimizationeffectivenesshasbeenvalidatedbycomparingwiththemodefrequencyofthecab.Usingtheoptimizationthecabmodefrequencyhasincreasedby16%andcabweightisdecreased.4.Topologyoptimizationofthecab.Amodeloftopologyoptimiza
7、tionisbuilt.SomesuggestionsfortheframedesignarepointedoutaccordingtotheIlItopologyoptimizationresults.WithmoreandmoreresearchesonDOEandinautomobilestructureoptimization,muchmoreresearchresultswillbeobtainedbyusingcomputertechnology,theoryanalysisande
8、xperiments.KEYWORDS:modeshapeanalysis,DesignofExperiment,topologyoptimization,finiteelementanalysisIV上海交通大学学位论文原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本
此文档下载收益归作者所有