基于改进的回声状态神经网络的非线性预测

基于改进的回声状态神经网络的非线性预测

ID:36455588

大小:2.46 MB

页数:63页

时间:2019-05-10

基于改进的回声状态神经网络的非线性预测_第1页
基于改进的回声状态神经网络的非线性预测_第2页
基于改进的回声状态神经网络的非线性预测_第3页
基于改进的回声状态神经网络的非线性预测_第4页
基于改进的回声状态神经网络的非线性预测_第5页
资源描述:

《基于改进的回声状态神经网络的非线性预测》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、南京工业大学硕士学位论文基于改进的回声状态神经网络的非线性预测姓名:王瑟申请学位级别:硕士专业:计算机应用技术指导教师:蔚承建20060515摘要关键词:回声状态神经网络;小波神经网络;小波分解;混沌时间序列预测;先验性;PSO;集群智能II硕士学位论文ABSTRACTNonlinearsystempredictionusingneuralnetworksappearsgreatefficiencyandhasabundanceofapplications.Recurrentneuralnetworksshowsmoreadvancedadvantagesamongthem

2、againstthesepredictiontasks,althoughitslearningmethodshavenotimprovedmuchmoreforlongtime.Echostatenetworkisonenovelstructureofrecurrentneuralnetwork(RNN)alsoonenovellearningmethodforRNNaswell,it’ssimilarwiththosebio-neural-networksstructurally,andithastheperfectSTMcapabilityasoneRNN.Itempl

3、oysonelargescaleRNNasinformationreservoircalleddynamicalreservoir,thenminimizesthemeaningsquarederror(MSE)duringtrainingtogetthelearningusingcomputingsimpleregressionweightmatrixfrominternalstatestowardsoutputunit.However,thereisonecontradictionexistinginESN,itis:toemploynonlinearneuroncan

4、raisethenonlinearcapabilityofESNbutreducetheSTMofitsimultaneously.IthastoemployoneverylargescaleDRwhenfacethosetoughtaskwhichrequirenotonlyhighnonlinearitybutalsoniceMClikechaotictimeseriesprediction.ThiscausestherunningprocessofESNslowingdownandbecomingmoreinstableduringexploitationperiod

5、.AccordingtothetranscendentalknowledgetheoryofANN,theESNcanemployotherneuralnodetoimprovetheperformance,thewavelonusinginWNNchoseninthisthesis.Theinternalstatespaceisenlargedwheninputsometunedwavelon.TheSWHESNcanpredict46%furtherthantheoriginalESNwithouttypicaldeviationbutonlyconsumingonly

6、30%timeofwhatESNdowhenlearningsamedatasample.Wecan’tforgetthatESNhasimprovedthebestprevious[1]technologybyfactor700.Thisthesisshowstri-highlightviews:1.WeintroducewavelonintoRNNwhichappearsinforwardANNtraditionally.2.Wereducedthediversitybetweenwavelonforthereasontosmoothworkingconditionin

7、ESNratherthanaugmentingthemwhichforwardANNwhoneedlargerbasicvectorfunctionembedded.3.Theparametersinechostatenetworksinvolvedinapplicationaresetbyexpertofechostatenetworkscommonly,whichusuallywasteofcomputationresource,inthispaperwepresentonemethodthattooptimi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。