欢迎来到天天文库
浏览记录
ID:36422659
大小:7.98 MB
页数:73页
时间:2019-05-10
《基于稀疏编码的视觉模型及其应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、上海交通大学硕士学位论文基于稀疏编码的视觉模型及其应用姓名:周期申请学位级别:硕士专业:计算机软件与理论指导教师:张丽清20090201ii组合等等较好的特性,因此成为了研究的热点。本文在基于已有的非负稀疏编码的基础上,加入了拓扑先验。同时,根据非负矩阵分解的乘性迭代公式的推导,推导出对于拓扑先验的乘性迭代公式。使用乘性迭代公式,算法的效率会更高,同时实验结果表明,该模型同样能够得到超完备,抗噪声的拓扑的结构,更好的解释的生物现象。关键词:稀疏编码,计算机视觉,超完备表征,视觉初级皮层ABSTRACTVisionperceptio
2、nisoneoftheintriguingproblemswhichattractshumanbeingsforalongtime.Itisachallengetodesignandconstructafastande±cientvisualsystemthatcancompetewithhumanvisualsystems.Withthedevelopmentofthescienceandtechnology,includingtherapidimprovementofcomputerability,thepopularizat
3、ionofhighprecisionandspeedimageacquisitionhardware,emergenceofnewvisionalgorithmandmoredatafromneurobiologyexperiments,designingasystemthatcanbecompetentforhumanvisionbasictaskssuchasfactdetectionandrecognitionisstillachallengeproblem.Theapproachtolearnandsimulatethef
4、eaturesandinternalworkingmechanismofbiologicalvisionsystemsistreatedasae®ectivewaytosolvetheproblem.Inthisthesis,webrie°yintroducethehumanvisionsystem-especiallytheprimatevisualcortex-anditsstructureandcharacteristics.Meanwhile,wedescribethemodernmodelingtools,includi
5、ngprobabilisticmodelandlineargen-erativeframework.Basedonthesetools,wealsodepicttheprimarycomponentanalysis,independentcomponentanalysis,sparsecodingandtheirmodelingonhumanprimatevisualsystems.Thefeatureslearnedbythesemethodscanre-vealsomeimportantcharacteristicssucha
6、ssparse,overcompleteandtopography.Themaincontributionsofthepaperare:1.SparsitypriorcriterionThesparsepropertyisconsideredasoneoftherea-sonsaccountingforthee±ciencyandhighspeedofhumanbrain.However,howtode¯nesparsityisstillnotwellde¯ned.Therearestillsomesubjectfactsinju
7、dgingsomedistributionsaresparewhilesomeothersarenot.Thepaperderivesthatsomepriorsinclassicalsparsecodingmodelwilltendtospreadaneuron'sactivationstotherestofneurons'toreducetheobjec-tivevalue.Thisphenomenonbreakstheassumptionofsparse.Wede¯nethevaluereducedas"duplicateb
8、onus"anddeducethatthesparsefunc-tionshouldsatisfysubadditiveproperty.Weevaluatedi®erentdistributionunderthiscriterionandvali
此文档下载收益归作者所有