欢迎来到天天文库
浏览记录
ID:36374348
大小:3.03 MB
页数:97页
时间:2019-05-10
《推荐系统中若干关键问题研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、南京航空航天大学博士学位论文推荐系统中若干关键问题研究姓名:李涛申请学位级别:博士专业:计算机应用技术指导教师:王建东20081001推荐系统中若干关键问题研究(4)信息安全和隐私保护是数据挖掘领域的热点之一。推荐系统需要收集用户兴趣喜好等相关数据,在一定程度上涉及了用户的个人隐私,因而推荐系统中的隐私保护也开始受到研究人员的关注。本文提出了一种基于随机扰动的隐私保护推荐算法。算法在用户数据收集过程中采用随机扰动技术,并使用非负矩阵分解对数据进行处理,从而形成隐私保护功能,并在此基础上产生推荐。通过分析及实验表明,算法在保护
2、用户个人隐私的基础上,能够产生具有一定精确度的推荐结果,以满足推荐系统的需要。关键词:推荐系统,协同过滤,数据挖掘,聚类,隐私保护II南京航空航天大学博士学位论文AbstractWiththedevelopmentoftheInternet,thewebprovidesmoreandmoreinformationforusers,whilethestructureofthewebhasalsobecomemoreandmorecomplex.Thissituationhasmadeitsubstantiallymoredif
3、ficultforuserstofindtheinformationtheyneedfromthevastamountofmaterialsavailableontheInternet.Therecommendersystemprovidesinformationfilteringforauserbypredictingtheparticularuser'spreference,anditcanapplyknowledgediscoverytechniquestomakepersonalizedrecommendations
4、tohelptheuserquicklyfindthedesiredinformation.Atthesametime,therecommendersystemcanenableenterprisestoachievetheobjectiveofpersonalizedmarketing,whichcanimprovesalesandgeneratemoreprofits.Inaddition,withthepopularizationofpersonalizedservice,therecommendersystemisw
5、idelyusedonagrowingnumberofwebsites,especiallyintheE-Commerceplatform.Becauseofitsgreatpotentialfordevelopmentandapplications,therecommendersystemhasbecomeanimportantresearchareainwebintelligenttechnologiesandattractedsignificantattentionfromresearchers.Althoughthe
6、developmentofrecommendersystemhasbeensuccessfulinbothresearchandapplications,anumberofchallengingresearchproblemsstillexist.Toaddressthesechallenges,thisdissertationexploresandstudiessomekeytechnologiesoftherecommendersystem,suchasthedesignofnovelalgorithmswithbett
7、errecommendationqualityandenhancedprivacyprotectiontechnology.Inparticular,dataminingandmachinelearningtechniquesareincorporatedintotherecommendersystem.Technologiesforenhancedreal-timerecommendation,improvedrecommendationqualityandstrengthenedprivacyprotectioninth
8、erecommendersystemareinvestigated.Themainresearchresultsofthisdissertationareasfollows:First,theperformanceofcollaborativefilteringsystemsdegrade
此文档下载收益归作者所有