电子商务推荐系统中协同过滤瓶颈问题研究

电子商务推荐系统中协同过滤瓶颈问题研究

ID:36360036

大小:5.48 MB

页数:130页

时间:2019-05-10

电子商务推荐系统中协同过滤瓶颈问题研究_第1页
电子商务推荐系统中协同过滤瓶颈问题研究_第2页
电子商务推荐系统中协同过滤瓶颈问题研究_第3页
电子商务推荐系统中协同过滤瓶颈问题研究_第4页
电子商务推荐系统中协同过滤瓶颈问题研究_第5页
资源描述:

《电子商务推荐系统中协同过滤瓶颈问题研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、合肥工业大学博士学位论文电子商务推荐系统中协同过滤瓶颈问题研究姓名:李聪申请学位级别:博士专业:管理科学与工程指导教师:梁昌勇20090401摘要合肥工业大学博士学位论文从而消除了传统方法在每次进行推荐计算时无法避免的扫描全体项目空间的计算耗费,有效改善了可扩展性;同时,由于这种增量更新机制保证了在推荐运算中能够使用到最新的用户评分数据,因此使得推荐服务可以适应用户兴趣偏好的动态变化,从而弥补了传统的离线计算项目相似性方法难以反映用户兴趣漂移的不足。(5)在本文提出的上述理论和方法基础上,设计并实现了一个电子商务协同过滤原型系统ECRec(E.CommerceReco

2、mmendersystem),该系统具有良好的可移植性、可维护性及开放式架构(openarchitecture)特征。关键词:电子商务推荐系统;协同过滤;稀疏性;冷启动:可扩展性合肥工业大学博士学位论文ABSTRACTWiththerapiddevelopmentofIntemetandE·commerce,humansocietyhasbeenstepintoinformationera.ThedevelopmentpotentialofChineseE—commerceisenormous,anditkeepsacontinuouslyhigh—speedincr

3、easing.PeoplecallenjoythehappinessandconvenienceofpurchasingproductsviaE.commercewebsitesathome.However’thetremendousproductscategory,whichsuppliedbyE—commercewebsites,brings“informationoverload”tousers.Hence,E。commercewebsitesfacesaseriousproblem:howtorecommendappropriateproductsforbro

4、wsinguserstoovercomethedetrimentaleffectsofinformationoverloadandpromotemoretransactionsforboostingthesalesofwebsites?E.commercerecommendersystemsareoneschemetosettleinformationoverload,andonetechniquetorealize“one—to—one”strategyofE-commercewebsites.Ithasbeenappliedinmanylarge-scaleweb

5、sitesbybeingtreated越ahelpfulpartofcustomerrelationshipmanagementforthewebsites.Collaborativefilteringisthemostsuccessfulandwidelyusedrecommendationalgorithmi11E.commercerecommendersystemscurrently.However,thereexistsomebottleneckproblemsincollaborativefiltering,such硒sparsity,cold-starta

6、ndscalability.Thesebottleneckproblemslimitthedevelopmentofcollaborativefiltering,henceweshoulddeeplystudyontheproblems.Themainresearchworksofthispaperare签follows:(1)Onthebasisofacomprehensiveoverviewontheresearchofcollaborativefilteringathomeandabroad,asummaryontheboaleneckproblemsofcol

7、laborativefilteringisgiven.(2)Toaddressthedrawbacksofitem—rating·predictioncollaborativefilteringalgorithminalleviatingsparsity,namelythatthesearchingofnearestneighborisnotaccurateenoughandthereexistsomeunnecessarycomputingcostinthealgorithm,thenon-targetusersdifferentiatingthe

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。