欢迎来到天天文库
浏览记录
ID:36356992
大小:3.11 MB
页数:73页
时间:2019-05-10
《支持向量机及其在铁路工程中的应用研究(I)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、西南交通大学硕士学位论文支持向量机及其在铁路工程中的应用研究姓名:蒋学申请学位级别:硕士专业:道路与铁道工程指导教师:李远富20081001西南交通大学硕士研究生学位论文第1I页AbstractSupportVectorMachine(SVM)basedontheSLT(statisticallearningtheory)isanewmachinelearningmethod,whichwasdevelopedbyVapnikandhisteamin1995;itembodiesthetheoryofstructur
2、eriskminimization(SRM)andCansolvetheproblemcharacterizedbynonlinear,highdimension,smallsampleandlocalmi‘ni‘mi。zi‘ngperfectly.SVMhasbecomethehotspotinthefieldofmachinelearningbecauseofitsexcellentlearningperformance,SOitwasappliedsuccessfullyinmanyengineeringfie
3、lds.ThisthesisappliedSVMtotherailwayengineefing,becauseithasbetterlearningfeatureandfutureapplyvaluewhichishopedtosolvemuchprobleminthedatamining(DM).ThefollowingworkWasconductedinthisthesis:.1.Expatiatedandcomparedthecommonmethodsinthepassengerpredictionandinv
4、estmentprediction.Detailedlydeducedthetraininganddecision·-makingprocessofSVMfromlinearSVMtoNon··linearSVMandsumthetrainingalgorithm.2.Summarizedthetheoryofneuralnetwork,constructedthepassengervolumepredictionmodelbasedonBPandrailwayinvestmentpredictionmodelbas
5、edonRBFbyprogrammingonMATLABlanguage.3.ConstructedtheregressionmodelonthebaseoftheoryofSVM,andthenappliedthismodelonthepredictionofcityrailwaypassengervolumebyLIBSVM.ThencomparedtheresultsbetweenSVMandBP,resultindicatethatSVMismoreprecisethanNNinthesituationofs
6、mallsample.4.Predictionoftheinvestmentisthehotspotofrailwayproject,constructedthesupportvectorregressionmodelbyLIBSVM,andapplieditontheTBMrailwaytunnelcostprediction,resultshowthatSVMhaveabetterperformancethanNNinthesituationofhighdimension.111eresultsshowthatS
7、VMmethodiSbetterthanneuralnetwork.ItiSbelievedthatUsingSVMtheorytOsolveregressionproblemisamethodwithpromisingprospect.Atlast,apersonalpreviewoffurthertasksintheresearchrealmsofneuralnetworkandsupportvectormachineiSpresented.西南交通大学硕士研究生学位论文第1II页-_●_●■●■_●I●____
8、●■●■■■■●■●■_●■●■■●■●mn-ml●■l●●●■●_■●■●■l_■●■_●■_■_●_■■●_●●l●■●■____●Keywords:supportvectormachine;neuralnetwork;regressionmodel;railwaypassengervolume;investmentprediction西南
此文档下载收益归作者所有