欢迎来到天天文库
浏览记录
ID:36340603
大小:35.50 KB
页数:4页
时间:2019-05-09
《抽屉问题的教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、抽屉问题的教学设计襄阳市河心小学刘全国设计理念:本课着眼于学生数学思维的发展,注重让学生充分体验猜测验证的推理过程,努力提高他们分析和解决问题的能力。通过实验操作、假设推理等活动,调动学生已有的生活经验,引导他们体验运用“抽屉原理”进行逆向思维的探究过程,培养学生观察比较、动手操作、逻辑推理以及语言表达等能力。让学生在应用“抽屉原理”的过程中,感受数学的魅力,激发他们学习数学的兴趣和探求数学知识的欲望。教学内容:《义务教育课程标准实验教科书 数学》(人教版)六年级下册第70、72页。学情与教材分析例题3是“抽屉原理”的具体应用,也是运用“抽屉原理”进行逆向思维的
2、一个典型例子。应该把什么看成抽屉,要分放的东西是什么。学生在思考这些问题的时候,一开始可能会缺乏思考的方向,很难找到切入点。而且,题中不同颜色球的个数,很容易给学生造成干扰。因此教学时,教师要允许学生借助实物操作等直观方式进行猜测、验证。并在此基础上,逐步引导学生把具体问题转化为“抽屉问题”,找出这里的“抽屉”是什么,“抽屉”有几个,再应用前面所学的“抽屉原理”进行反向推理。教学目标:1.通过观察、猜测、实验、推理等活动,寻找隐藏在实际问题背后的“抽屉问题”的一般模型。体会如何对一些简单的实际问题“模型化”,用“抽屉原理”加以解决。2.在经历将具体问题“数学化”
3、的过程中,发展数学思维能力和解决问题的能力,感受数学的魅力。同时积累数学活动的经验与方法,在灵活应用中,进一步理解“抽屉原理”。教学准备:一个信封、4个白棋子和4个黑棋子为一份,准备这样的教、学具若干份。教学过程:一、创设情境,猜想验证1.猜一猜,摸一摸。(出示一个装了4个白棋子和4个黑棋子的信封,晃动几下)师:同学们,猜一猜老师在信封里放了什么? (请一个同学到信封里摸一摸,并摸出一个给大家看)师:老师的信封里有同样大小的黑白棋子各4个,如果这位同学再摸一个,可能是什么颜色的?师:如果老师想让这位同学摸出的棋子,一定有2个同色的,最少要摸出几个?【设计意图:利
4、用学生的好奇心理,创设摸物体的活动,激发学生的学习兴趣,为他们投入探究学习的活动做好情感铺垫。】 2.想一想,摸一摸。请学生独立思考后,先在小组内交流自己的想法,再动手操作试一试,验证各自的猜想。在这个过程中,教师要加强巡视,要注意引导学生思考本题与前面所讲的抽屉原理有没有联系,如果有联系,有什么样的联系,应该把什么看成抽屉,要分放的东西是什么。【学情预设:学生有的可能会猜测“只摸2个棋子能保证这2个棋子同色”;有的由于受到题目中“4个白棋子和4个黑棋子”这个条件的干扰,可能会猜测要摸的棋子数只要比其中一种颜色的个数多1就可以了,即“至少要摸出5个棋子才能保证一
5、定有2个是同色的”…对于前一种想法,只要举出一个反例就可以推翻这种猜测,如两个棋子正好是一白一黑时,就不能满足条件。对于后一种想法,学生虽然找错了“抽屉”和“抽屉”的个数,但是教师还是应给予一定的鼓励。因为这种想法说明学生已自觉地把“摸球问题”与“抽屉问题”联系起来了,这对后面找出摸棋子的规律以及弄清本题与“抽屉问题”的联系非常有帮助。】二、观察比较,分析推理1.说一说,在比较中初步感知。请一个小组派代表概括地汇报探究的过程与结果。其他小组有不同想法可以补充汇报。汇报时可以借助演示来帮助说明。如果汇报中出现不同的想法,师生可以共同梳理,比较各种想法,寻找能保证摸
6、出2个同色棋子的最少次数,达成统一认识。即:本题中,要想摸出的棋子一定有2个同色的,最少要摸出3个.【学情预设:虽然猜测之初,学生中可能会有这样那样的想法,但经过动手操作及同伴交流,学生对于本题“要想摸出的棋子一定有2个同色的,最少要摸出3个”这个结论不难达成共识。】2.想一想,在反思中学习推理。师:同学们,为什么至少摸出3个棋子就一定能保证摸出的棋子中有两个是同色的?请学生先想一想,再和同桌说一说,最后全班交流。【学情预设:如果学生在理解时出现比较大的困难,可以引导他们这样思考:棋子的颜色一共有两种,如果只取两个,会出现三种情况:两个白棋子、一个白棋子一个黑棋
7、子、两个黑棋子。如果再取一个棋子,不管是白还是黑,都能保证三个棋子中一定有两个同色的。】三、深入探究,沟通联系师:为什么前面有些同学会认为在4个白棋子和4个黑棋子中,要想一定摸出2个同色的棋子,最少要摸出5个来?请大家猜一猜,他们是怎样想的?(如果没人猜出来,可以请先前这样想的同学说一说当时的想法。)师:这种想法实际上是把今天学习的例题3和我们前面学过的“抽屉问题”联系起来了,把4看成了“抽屉数”,也就是把每种颜色棋子的个数当成了“抽屉数”。这种想法有没有一点道理?例题3和“抽屉问题”有联系吗?请学生先独立思考一会,再在小组内讨论,最后全班交流。【设计意图:在实
8、际问题和“抽屉问题”之间
此文档下载收益归作者所有