资源描述:
《模式识别作业2.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、作业一:在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。问该模式识别问题所需判别函数的最少数目是多少?答案:将10类问题可看作4类满足多类情况1的问题,可将3类单独满足多类情况1的类找出来,剩下的7类全部划到4类中剩下的一个子类中。再在此子类中,运用多类情况2的判别法则进行分类,此时需要7*(7-1)/2=21个判别函数。故共需要4+21=25个判别函数。作业二:一个三类问题,其判别函数如下:d1(x)=-x1,d2(x)=x1+x2-1,d3(x)=x1-x2-11.设这些函数是在多类情况1条件下确定的,绘出其判别界面和每一个模式类别的区域
2、。2.设为多类情况2,并使:d12(x)=d1(x),d13(x)=d2(x),d23(x)=d3(x)。绘出其判别界面和多类情况2的区域。3.设d1(x),d2(x)和d3(x)是在多类情况3的条件下确定的,绘出其判别界面和每类的区域。答案:123作业三:两类模式,每类包括5个3维不同的模式,且良好分布。如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。)答案:如果它们是线性可分的,则至少需要4个系数分量;如果要建立二次的多项式判别函数,则至少需要个系数分量。作业四:用感知器算法
3、求下列模式分类的解向量w:ω1:{(000)T,(100)T,(101)T,(110)T}ω2:{(001)T,(011)T,(010)T,(111)T}答案:将属于ω2的训练样本乘以(-1),并写成增广向量的形式。x①=(0001)T,x②=(1001)T,x③=(1011)T,x④=(1101)Tx⑤=(00-1-1)T,x⑥=(0-1-1-1)T,x⑦=(0-10-1)T,x⑧=(-1-1-1-1)T第一轮迭代:取C=1,w(1)=(0000)T因wT(1)x①=(0000)(0001)T=0≯0,故w(2)=w(1)+x①=(0001)因wT(2)x②=(0001)(
4、1001)T=1>0,故w(3)=w(2)=(0001)T因wT(3)x③=(0001)(1011)T=1>0,故w(4)=w(3)=(0001)T因wT(4)x④=(0001)(1101)T=1>0,故w(5)=w(4)=(0001)T因wT(5)x⑤=(0001)(00-1-1)T=-1≯0,故w(6)=w(5)+x⑤=(00-10)T因wT(6)x⑥=(00-10)(0-1-1-1)T=1>0,故w(7)=w(6)=(00-10)T因wT(7)x⑦=(00-10)(0-10-1)T=0≯0,故w(8)=w(7)+x⑦=(0-1-1-1)T因wT(8)x⑧=(0-1-1-
5、1)(-1-1-1-1)T=3>0,故w(9)=w(8)=(0-1-1-1)T因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。第二轮迭代:因wT(9)x①=(0-1-1-1)(0001)T=-1≯0,故w(10)=w(9)+x①=(0-1-10)T因wT(10)x②=(0-1-10)(1001)T=0≯0,故w(11)=w(10)+x②=(1-1-11)T因wT(11)x③=(1-1-11)(1011)T=1>0,故w(12)=w(11)=(1-1-11)T因wT(12)x④=(1-1-11)(1101)T=1>0,故w(13)=w(12)=(1-1
6、-11)T因wT(13)x⑤=(1-1-11)(00-1-1)T=0≯0,故w(14)=w(13)+x⑤=(1-1-20)T因wT(14)x⑥=(1-1-20)(0-1-1-1)T=3>0,故w(15)=w(14)=(1-1-20)T因wT(15)x⑧=(1-1-20)(0-10-1)T=1>0,故w(16)=w(15)=(1-1-20)T因wT(16)x⑦=(1-1-20)(-1-1-1-1)T=2>0,故w(17)=w(16)=(1-1-20)T因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第三轮迭代。第三轮迭代:w(25)=(2-2-20);因为只有对全
7、部模式都能正确判别的权向量才是正确的解,因此需进行第四轮迭代。第四轮迭代:w(33)=(2-2-21)因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第五轮迭代。第五轮迭代:w(41)=(2-2-21)因为该轮迭代的权向量对全部模式都能正确判别。所以权向量即为(2-2-21),相应的判别函数为作业五:编写求解上述问题的感知器算法程序。程序源码:#includeusingnamespacestd;intscale;//每个样本的维数,最多支持十维intW1_N,W2_N;