欢迎来到天天文库
浏览记录
ID:36190292
大小:257.50 KB
页数:36页
时间:2019-05-07
《3.1直线的倾斜角与斜率课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.1直线的倾斜角与斜率问题提出1.在平面直角坐标系中,一次函数y=kx+b的图象是什么?其中k,b的几何意义如何?2.在平面直角坐标系中,经过一点P可以作无数条直线,如何区别这些直线的不同位置?3.1.1倾斜角与斜率知识探究(一):直线的倾斜角思考1:在直角坐标系中,下图中的四条直线在位置上有什么联系和区别?xyoP思考2:在直角坐标系中,任何一条直线与x轴都有一个相对倾斜度,可以用一个什么几何量来反映一条直线与x轴的相对倾斜程度呢?xyo思考3:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.xyo下列各图中标出的角α
2、是直线的倾斜角吗?xoyαxoyαxoyαxoyα思考4:下图中直线l1,l2,l3的倾斜角大致是一个什么范围内的角?xyol1l2l3思考6:任何一条直线都有倾斜角吗?不同的直线其倾斜角一定不相同吗?思考5:特别地,当直线l与x轴平行或重合时,规定它的倾斜角为0°,那么直线的倾斜角的取值范围是什么?0°≤α<180°知识探究(二):直线的斜率思考1:函数的图象是直线,这两条直线的倾斜角分别是多少?思考2:上述两条直线的倾斜角分别与x的系数有什么关系?xyoy=xxyo思考3:初中学过的“坡度(比)”是什么含义?它能否表示直线的倾斜程度?它与这条直线的倾斜角之间有什么关
3、系?前进量升高量α思考4:我们把一条直线的倾斜角α的正切值叫做这条直线的斜率.常用小写字母k表示,即k=tanα,那么任何一条直线都有斜率吗?倾斜角是900的直线(垂直与x轴的直线)没有斜率.思考6:当α是锐角时,有tan(1800-α)=-tanα.那么当倾斜角α=1200,1350,1500时,这条直线的斜率分别等于多少?思考5:当倾斜角α=00,300,450,600时,这条直线的斜率分别等于多少?思考8:斜率相等的直线其倾斜角相等吗?斜率大的直线其倾斜角也大吗?思考7:倾斜角为锐角、钝角的直线的斜率的取值范围分别是什么?一般地,直线的斜率的取值范围是什么?倾斜角
4、为锐角时,k>0;倾斜角为钝角时,k<0;倾斜角为00时,k=0.知识探究(三):直线的斜率公式思考1:在直角坐标系中,经过两点A(2,4)、B(-1,3)的直线有几条?直线AB的斜率是多少?αxyoABCα思考2:一般地,已知直线上的两点P1(x1,y1),P2(x2,y2),且直线P1P2与x轴不垂直,即x1≠x2,直线P1P2的斜率是什么?xyoαP1P2QαxyoαP1P2Qθ思考3:当直线P1P2平行于x轴或与x轴重合时,上述公式还适用吗?为什么?思考4:当直线P1P2平行于y轴或与y轴重合时,上述公式还适用吗?为什么?思考5:经过点A(a,b)、B(m,n)
5、(a≠m)的直线的斜率是什么?思考6:对于三个不同的点A,B,C,若,则这三点的位置关系如何?理论迁移例1已知点A(3,2),B(-4,1),C(0,-l),求直线AB,BC,CA的斜率,并判断这些直线的倾斜角是锐角还是钝角.例2在平面直角坐标系中,画出经过原点且斜率分别为l,-1,2及-3的直线l1,l2,l3及l4.xyol1l2l3l4作业:P86练习:2,3,4.P89习题3.1A组:3,4,5.P90习题3.1B组:5,6.问题提出1.直线的倾斜角和斜率的含义分别是什么?经过两点的直线的斜率公式是什么?x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.
6、直线的倾斜角α的正切值叫做这条直线的斜率.2.在平面直角坐标系中,平行与垂直是两条不同直线的两种特殊位置关系,我们设想通过直线的斜率来判定这两种位置关系.3.1.2两条直线平行与垂直的判定知识探究(一):两条直线平行的判定思考1:在平面直角坐标系中,已知一条直线的倾斜角为400,那么这条直线的位置是否确定?Oyxl1l2α1α2思考2:若两条不同直线的倾斜角相等,这两条直线的位置关系如何?反之成立吗?思考4:若两条不同直线的斜率相等,这两条直线的位置关系如何?反之成立吗?思考3:如果α1=α2,那么tanα1=tanα2成立吗?反之成立吗?思考6:对任意两条直线,如果它
7、们的斜率相等,这两条直线一定平行吗?思考5:对于两条不重合的直线l1和l2,其斜率分别为k1,k2,根据上述分析可得什么结论?知识探究(二):两条直线垂直的判定思考1:如果两直线垂直,这两条直线的倾斜角可能相等吗?思考2:如图,设直线l1与l2的倾斜角分别为α1与α2,且α1<α2,若l1⊥l2,则α1与α2之间有什么关系?yl1Oxl2α1α2思考3:已知tan(900+α)=-,据此,你能得出直线l1与l2的斜率k1、k2之间的关系吗?思考4:反过来,当k1·k2=-1时,直线l1与l2一定垂直吗?思考6:对任意两条直线,如果l1⊥l
此文档下载收益归作者所有