2013高三数学二轮复习专题—数列

2013高三数学二轮复习专题—数列

ID:36185635

大小:755.50 KB

页数:10页

时间:2019-05-07

2013高三数学二轮复习专题—数列_第1页
2013高三数学二轮复习专题—数列_第2页
2013高三数学二轮复习专题—数列_第3页
2013高三数学二轮复习专题—数列_第4页
2013高三数学二轮复习专题—数列_第5页
资源描述:

《2013高三数学二轮复习专题—数列》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2013高三数学二轮复习专题—数列【高频考点解读】一、等差数列的性质1.等差数列的定义:(d为常数)();2.等差数列通项公式:推广:.3.等差中项(1)如果,,成等差数列,那么叫做与的等差中项.即:或(2)数列是等差数列4.等差数列的前n项和公式:(其中A、B是常数,所以当d≠0时,Sn是关于n的二次式且常数项为0)特别地,当项数为奇数时,是项数为2n+1的等差数列的中间项(项数为奇数的等差数列的各项和等于项数乘以中间项)5.等差数列的判定方法(1)定义法:若或(常数)是等差数列.(2)数列是等差数列.⑶数列是等差数列(其中是常数)。(4)数列是等差数列,(

2、其中A、B是常数)。6.等差数列的证明方法定义法:若或(常数)是等差数列.7.提醒:(1)等差数列的通项公式及前和公式中,涉及到5个元素:、、、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。(2)设项技巧:①一般可设通项②奇数个数成等差,可设为…,…(公差为);③偶数个数成等差,可设为…,,…(注意;公差为2)8..等差数列的性质:(1)当公差时,等差数列的通项公式是关于的一次函数,且斜率为公差;10前和是关于的二次函数且常数项为0.(2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。(3)当

3、时,则有,特别地,当时,则有.(4)若、为等差数列,则都为等差数列(5)若{}是等差数列,则,…也成等差数列(6)数列为等差数列,每隔k(k)项取出一项()仍为等差数列(7)设数列是等差数列,d为公差,是奇数项的和,是偶数项项的和,是前n项的和1.当项数为偶数时,2、当项数为奇数时,则(其中是项数为2n+1的等差数列的中间项).(8)、的前和分别为、,且,则.(9)等差数列的前n项和,前m项和,则前m+n项和(10)求的最值法一:因等差数列前项和是关于的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性。法二:(1)“首正”的递减等差数列中,前项和的最

4、大值是所有非负项之和即当由可得达到最大值时的值.(2)“首负”的递增等差数列中,前项和的最小值是所有非正项之和。10即当由可得达到最小值时的值.或求中正负分界项法三:直接利用二次函数的对称性:由于等差数列前n项和的图像是过原点的二次函数,故n取离二次函数对称轴最近的整数时,取最大值(或最小值)。若Sp=Sq则其对称轴为二、等比数列的性质1.等比数列的定义:,称为公比2.通项公式:,推广:,3.等比中项(1)如果成等比数列,那么叫做与的等差中项.即:或注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列是等比数列4.等比数

5、列的前n项和公式:(1)当时,(2)当时,(为常数)5.等比数列的判定方法(1)用定义:对任意的n,都有为等比数列(2)等比中项:(0)为等比数列(3)通项公式:为等比数列(4)前n项和公式:为等比数列6.等比数列的证明方法10依据定义:若或为等比数列7.注意(1)等比数列的通项公式及前和公式中,涉及到5个元素:、、、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。(2)为减少运算量,要注意设项的技巧,一般可设为通项;如奇数个数成等差,可设为…,…(公比为,中间项用表示);8.等比数列的性质(1)当时①等比数列通项公式是

6、关于n的带有系数的类指数函数,底数为公比②前n项和,系数和常数项是互为相反数的类指数函数,底数为公比(2)对任何m,n,在等比数列中,有,特别的,当m=1时,便得到等比数列的通项公式.因此,此公式比等比数列的通项公式更具有一般性。(3)若m+n=s+t(m,n,s,t),则.特别的,当n+m=2k时,得注:(4)列,为等比数列,则数列,,,(k为非零常数)均为等比数列.(5)数列为等比数列,每隔k(k)项取出一项()仍为等比数列(6)如果是各项均为正数的等比数列,则数列是等差数列(7)若为等比数列,则数列,,,成等比数列10(8)若为等比数列,则数列,,成等比

7、数列(9)①当时,②当时,,③当q=1时,该数列为常数列(此时数列也为等差数列);④当q<0时,该数列为摆动数列.(10)在等比数列中,当项数为2n(n)时,,.(11)若是公比为q的等比数列,则三、递推数列类型1解法:把原递推公式转化为,利用累加法(逐差相加法)求解。例:已知数列满足,,求。类型2解法:把原递推公式转化为,利用累乘法(逐商相乘法)求解。例:已知数列满足,,求。类型3(其中p,q均为常数,)。例:已知数列中,,,求.类型4(其中p,q均为常数,)。(,其中p,q,r均为常数)。例:已知数列中,,,求。类型5递推公式为与的关系式。(或)解法:这种

8、类型一般利用10例:已知数列前n项和.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。