2012北京中考数学二模操作题分类

2012北京中考数学二模操作题分类

ID:36183066

大小:800.50 KB

页数:8页

时间:2019-05-07

2012北京中考数学二模操作题分类_第1页
2012北京中考数学二模操作题分类_第2页
2012北京中考数学二模操作题分类_第3页
2012北京中考数学二模操作题分类_第4页
2012北京中考数学二模操作题分类_第5页
资源描述:

《2012北京中考数学二模操作题分类》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、六、解答题(共2道小题,共10分)延庆2012.622.(本题满分4分)阅读下面材料:阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值。小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A’BC,连接,当点A落在上时,此题可解(如图2).请你回答:AP的最大值是.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则

2、AP+BP+CP的最小值是.(结果可以不化简)石景山2012.622.阅读下面材料:小阳遇到这样一个问题:如图(1),O为等边△内部一点,且,求的度数.图⑴图⑵图⑶小阳是这样思考的:图(1)中有一个等边三角形,若将图形中一部分绕着等边三角形的某个顶点旋转60°,会得到新的等边三角形,且能达到转移线段的目的.他的作法是:如图(2),把△绕点A逆时针旋转60°,使点C与点B重合,得到△,连结.则△是等边三角形,故,至此,通过旋转将线段OA、OB、OC转移到同一个三角形中.(1)请你回答:.(2)参考小阳思考问题的方法,解决下列问题:已知:如图(3)

3、,四边形ABCD中,AB=AD,∠DAB=60°,∠DCB=30°,AC=5,CD=4.求四边形ABCD的面积.解:顺义2012.622.阅读下列材料:问题:如图1,P为正方形ABCD内一点,且PA∶PB∶PC=1∶2∶3,求∠APB的度数.小娜同学的想法是:不妨设PA=1,PB=2,PC=3,设法把PA、PB、PC相对集中,于是他将△BCP绕点B顺时针旋转90°得到△BAE(如图2),然后连结PE,问题得以解决.请你回答:图2中∠APB的度数为.请你参考小娜同学的思路,解决下列问题:如图3,P是等边三角形ABC内一点,已知∠APB=115°,

4、∠BPC=125°.(1)在图3中画出并指明以PA、PB、PC的长度为三边长的一个三角形(保留画图痕迹);(2)求出以PA、PB、PC的长度为三边长的三角形的各内角的度数分别等于.图1图2图3门头沟2012.622.数学课上,同学们探究发现:如图1,顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.并且对其进行了证明.(1)证明后,小乔又发现:下面两个等腰三角形如图2、图3也具有这种特性.请你在图2、图3中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所画等腰三角形两个底角的度数;(2)接着

5、,小乔又发现:直角三角形和一些非等腰三角形也具有这样的特性,如:直角三角形斜边上的中线可以把它分成两个小等腰三角形.请你画出一个具有这种特性的三角形的示意图,并在图中标出此三角形的各内角的度数.(说明:要求画出的既不是等腰三角形,也不是直角三角形.)丰台2012.622.小杰遇到这样一个问题:如图1,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F,连结EF,△AEF的三条高线交于点H,如果AC=4,EF=3,求AH的长.小杰是这样思考的:要想解决这个问题,应想办法将题目中的已知线段与所求线段尽可能集中到同一个三角形中.他先后尝试了翻折、旋转

6、、平移的方法,发现可以通过将△AEH平移至△GCF的位置(如图2),可以解决这个问题.请你参考小杰同学的思路回答:(1)图2中AH的长等于.(2)如果AC=a,EF=b,那么AH的长等于.图1图2密云2012.622.定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图1,,,则点就是四边形的准内点.(1)如图2,与的角平分线相交于点.求证:点是四边形的准内点.(2)分别画出图3平行四边形和图4梯形的准内点(作图工具不限,不写作法,但要有必要的说明).昌平2012.622.类比学习:有这样一个命题:设x、y、z都

7、是小于1的正数,求证:x(1-y)+y(1-z)+z(1-x)<1.小明同学是这样证明的:如图,作边长为1的正三角形ABC,并分别在其边上截取AD=x,BE=z,CF=y,设△ADF、△CEF和△BDE的面积分别为、、,则,,.由++<,得++<.所以x(1-y)+y(1-z)+z(1-x)<1.类比实践:已知正数、、、,、、、满足====.求证:+++<.西城2012.622.阅读下列材料图1小华在学习中发现如下结论:如图1,点A,A1,A2在直线l上,当直线l∥BC时,.请你参考小华的学习经验画图(保留画图痕迹):(1)如图2,已知△ABC

8、,画出一个等腰△DBC,使其面积与△ABC面积相等;(2)如图3,已知△ABC,画出两个Rt△DBC,使其面积与△ABC面积相等(要求:所画的两个三角

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。