欢迎来到天天文库
浏览记录
ID:36176099
大小:570.50 KB
页数:39页
时间:2019-05-06
《1.2.2组合(二)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、——组合应用题组合(二)例1.在产品检验中,常从产品中抽出一部分进行检查.现有100件产品,其中3件次品,97件正品.要抽出5件进行检查,根据下列各种要求,各有多少种不同的抽法?(1)无任何限制条件;(2)全是正品;(3)只有2件正品;(4)至少有1件次品;(5)至多有2件次品;(6)次品最多.解答:(1)(2)(3)(4),或(5)(6)反思:“至少”“至多”的问题,通常用分类法或间接法求解。练习1、在100件产品中有98件合格品,2件次品。产品检验时,从100件产品中任意抽出3件。(1)一共有
2、多少种不同的抽法?(2)抽出的3件中恰好有1件是次品的抽法有多少种?(3)抽出的3件中至少有1件是次品的抽法有多少种?②①③练习2按下列条件,从12人中选出5人,有多少种不同选法?(1)甲、乙、丙三人必须当选;(2)甲、乙、丙三人不能当选;(3)甲必须当选,乙、丙不能当选;(4)甲、乙、丙三人只有一人当选;(5)甲、乙、丙三人至多2人当选;(6)甲、乙、丙三人至少1人当选;例2在∠MON的边OM上有5个异于O点的点,ON上有4个异于O点的点,以这十个点(含O)为顶点,可以得到多少个三角形?NOMA
3、BCDEFGHI·········例3.6本不同的书,按下列要求各有多少种不同的选法:(1)分给甲、乙、丙三人,每人2本;解:(1)根据分步计数原理得到:种例3.6本不同的书,按下列要求各有多少种不同的选法:(2)分为三份,每份2本;解析:(2)分给甲、乙、丙三人,每人两本有种方法,这个过程可以分两步完成:第一步分为三份,每份两本,设有x种方法;第二步再将这三份分给甲、乙、丙三名同学有种方法.根据分步计数原理所以.可得:因此,分为三份,每份两本一共有15种方法所以.点评:本题是分组中的“平均分组”
4、问题.一般地:将mn个元素均匀分成n组(每组m个元素),共有种方法例3.6本不同的书,按下列要求各有多少种不同的选法:(3)分为三份,一份1本,一份2本,一份3本;(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;解:(3)这是“不均匀分组”问题,一共有种方法.(4)在(3)的基础上再进行全排列,所以一共有种方法.例3.6本不同的书,按下列要求各有多少种不同的选法:(5)分给甲、乙、丙三人,每人至少1本解:(5)可以分为三类情况:①“2、2、2型”的分配情况,有种方法;②“1、2、3型”的分
5、配情况,有种方法;③“1、1、4型”,有种方法,所以,一共有90+360+90=540种方法.注意:对于排列组合的混合应用题,一般解法是先选后排。练习:10名学生均分成2组,每组选出正、副组长各1人,共有多少种不同的方法?元素相同问题隔板策略例4.有10个运动员名额,再分给7个班,每班至少一个,有多少种分配方案?解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有_________
6、__种分法。一班二班三班四班五班六班七班将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素排成一排的n-1个空隙中,所有分法数为练习、(1)10个优秀指标分配给6个班级,每个班级至少一个,共有多少种不同的分配方法?(2)10个优秀指标分配到1、2、3三个班,若名额数不少于班级序号数,共有多少种不同的分配方法?分析:(1)这是同种元素的“不平均分组”问题.本小题可构造数学模型,用5个隔板插入10个指标中的9个空隙,即有种方法。按照第一个隔板前的指标数为1班
7、的指标,第一个隔板与第二个隔板之间的指标数为2班的指标,以此类推,因此共有种分法.(2)先拿3个指标分给二班1个,三班2个,然后,问题转化为7个优秀指标分给三个班,每班至少一个.由(1)可知共有种分法注:第一小题也可以先给每个班一个指标,然后,将剩余的4个指标按分给一个班、两个班、三个班、四个班进行分类,共有种分法.例5.(1)四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?(2)四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?解:(1)根据分步计数原理:一共有种方法;(2
8、)(捆绑法)第一步:从四个不同的小球中任取两个“捆绑”在一起看成一个元素有种方法;第二步:从四个不同的盒中任取三个将球放入有种方法,所以,一共有=144种方法例6.有12名划船运动员,其中3人只会划左舷,4人只会划右舷,其它5人既会划左舷,又会划右舷,现要从这12名运动员中选出6人平均分在左右舷参加划船比赛,有多少种不同的选法?多面手问题练习:在11名工人中,有5人只能当钳工,4人只能当车工,另外2人既能当钳工,又能当车工,现从11人中选出4人当钳工,4人当车工,问有多少种不同的选
此文档下载收益归作者所有