几何概型典型例题

几何概型典型例题

ID:36162222

大小:128.00 KB

页数:3页

时间:2019-05-06

几何概型典型例题_第1页
几何概型典型例题_第2页
几何概型典型例题_第3页
资源描述:

《几何概型典型例题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、几何概型1.(2009年高考福建卷)点A为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B,则劣弧的长度小于1的概率为________.答案:解析:设事件M为“劣弧的长度小于1”,则满足事件M的点B可以在定点A的两侧与定点A构成的弧长小于1的弧上随机取一点,由几何概型的概率公式得:P(M)=.2.(2010年苏、锡、常、镇四市调研)已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000粒黄豆,数得落在阴影部分的黄豆数为600粒,则可以估计出阴影部分的面积约为________.答案:36解析:设

2、所求的面积为S,由题意得=,∴S=36.3.在棱长为a的正方体ABCD-A1B1C1D1内任取一点P,则点P到点A的距离小于等于a的概率为________.解析:P==.答案:4.(2010年扬州调研)已知集合A{x

3、-1

4、>0},在集合A中任取一个元素x,则事件“x∈A∩B”的概率是________.解析:由题意得A={x

5、-1

6、2

7、到车站,则小王等车时间不超过4分钟的概率是________.答案:6.如图,M是半径为R的圆周上一个定点,在圆周上等可能地任取一点N,连结MN,则弦MN的长度超过R的概率是________.答案:解析:连结圆心O与M点,作弦MN使∠MON=90°,这样的点有两个,分别记为N1,N2,仅当点N在不包含点M的半圆弧上取值时,满足MN>R,此时∠N1ON2=180°,故所求的概率为=.7.已知Ω={(x,y)

8、x+y≤6,x≥0,y≥0},E={(x,y)

9、x3-2y≥0,x≤4,y≥0},若向区域Ω内随机投一点P

10、,则点P落入区域E的概率为________.解析:如图,区域Ω表示的平面区域为△AOB边界及其内部的部分,区域E表示的平面区域为△COD边界及其内部的部分,所以点P落入区域E的概率为==.答案:8.已知函数f(x)=-x2+ax-b.若a、b都是从区间[0,4]任取的一个数,则f(1)>0成立的概率是________.解析:f(1)=-1+a-b>0,即a-b>1,如图:A(1,0),B(4,0),C(4,3),S△ABC=,P===.答案:9.在区间[0,1]上任意取两个实数a,b,则函数f(x)=x3+a

11、x-b在区间[-1,1]上有且仅有一个零点的概率为________.解析:f′(x)=x2+a,故f(x)在x∈[-1,1]上单调递增,又因为函数f(x)=x3+ax-b在[-1,1]上有且仅有一个零点,即有f(-1)·f(1)<0成立,即(--a-b)(+a-b)<0,则(+a+b)(+a-b)>0,可化为或由线性规划知识在平面直角坐标系aOb中画出这两个不等式组所表示的可行域,再由几何概型可以知道,函数f(x)=x3+ax-b在[-1,1]上有且仅有一个零点的概率为可行域的面积除以直线a=0,a=1,b=

12、0,b=1围成的正方形的面积,计算可得面积之比为.答案:10.设不等式组表示的区域为A,不等式组表示的区域为B.(1)在区域A中任取一点(x,y),求点(x,y)∈B的概率;(2)若x,y分别表示甲、乙两人各掷一次骰子所得的点数,求点(x,y)在区域B中的概率.解:(1)设集合A中的点(x,y)∈B为事件M,区域A的面积为S1=36,区域B的面积为S2=18,∴P(M)===.(2)设点(x,y)在区域B为事件N,甲、乙两人各掷一次骰子所得的点(x,y)的个数为36个,其中在区域B中的点(x,y)有21个,故

13、P(N)==.11.(2010年江苏南通模拟)已知集合A={x

14、-1≤x≤0},集合B={x

15、ax+b·2x-1<0,0≤a≤2,1≤b≤3}.3(1)若a,b∈N,求A∩B≠∅的概率;(2)若a,b∈R,求A∩B=∅的概率.解:(1)因为a,b∈N,(a,b)可取(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)共9组.令函数f(x)=ax+b·2x-1,x∈[-1,0],则f′(x)=a+bln2·2x.因为a∈[0,2],b∈[1,3],所以f′(

16、x)>0,即f(x)在[-1,0]上是单调递增函数.f(x)在[-1,0]上的最小值为-a+-1.要使A∩B≠∅,只需-a+-1<0,即2a-b+2>0.所以(a,b)只能取(0,1),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)7组.所以A∩B≠∅的概率为.(2)因为a∈[0,2],b∈[1,3],所以(a,b)对应的区域为边长为2的正方形(如图),面积为4.由(1)可知

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。