1、第36讲合情推理与演绎推理[解密考纲]高考中,归纳推理和类比推理主要是和数列、不等式等内容联合考查,多以选择题和填空题的形式出现.一、选择题1.下面四个推导过程符合演绎推理三段论形式且推理正确的是( B )A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循
2、环小数是无理数解析对于A项,小前提与结论互换,错误;对于B项,符合演绎推理过程且结论正确;对于C项和D项,均为大前提错误,故选B.2.请仔细观察1,1,2,3,5,( ),13,运用合情推理,可知写在括号里的数最可能是( A )A.8 B.9 C.10 D.11解析观察题中所给各数可知,2=1+1,3=1+2,5=2+3,8=3+5,13=5+8,∴括号中的数为8.故选A.3.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k
3、n∈Z},k=0,1,2,3,4
4、.给出如下四个结论:①2013∈[3];②-2∈[2];③Z=[0]∪[1]∪[2]∪[3]∪[4];④整数a,b属于同一“类”的充要条件是“a-b∈[0]”.其中正确结论的个数为( C )A.1 B.2 C.3 D.4解析因为2013=402×5+3,所以2013∈[3],①正确;-2=-1×5+3,-2∈[3],所以②不正确;因为整数集中被5除的数可以且只可以分成五类,所以③正确;整数a,b属于同一“类”,因为整数a,b被5除的余数相同,从而a-b被5除的余数为0,反之也成立,故整数a,b属于同一
5、“类”的充要条件是“a-b∈[0]”,故④正确.所以正确的结论有3个,故选C.4.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( D )A.f(x) B.-f(x)C.g(x) D.-g(x)解析由所给等式知,偶函数的导数是奇函数.∵f(-x)=f(x),∴f(x)是偶函数,从而g(x)是奇函数.∴g(-x)=-g(x).5.已知an=logn+1(n+2)(n∈N*
6、),观察下列运算:a1·a2=log23·log34=·=2;a1·a2·a3·a4·a5·a6=log23·log34·…·log78=··…·=3;….若a1·a2·a3·…·ak(k∈N*)为整数,则称k为“企盼数”,试确定当a1·a2·a3·…·ak=2018时,“企盼数”k为( C )A.22017+2 B.22017C.22018-2 D.22017-4解析a1·a2·a3·…·ak==2018,lg(k+2)=lg22018,故k=22018-2.6.(2016·北京卷)袋中装有偶数个球,
7、其中红球、黑球各占一半.甲,乙,丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( B )A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多解析假设袋中只有一红一黑两个球,第一次取出后,若将红球放入了甲盒,则乙盒中有一个黑球,丙盒中无球,A错误;若将黑球放入了甲盒,则乙盒中无球,丙盒中有一个红球,D错误;同样,假设袋中有两