欢迎来到天天文库
浏览记录
ID:36132675
大小:1.02 MB
页数:17页
时间:2019-05-06
《余世松——高一数学(2.2.2-1对数函数的概念与图象)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2.2对数函数及其性质第一课时对数函数的定义、图象与性质南宁市第二十九中学余世松指数函数a>10<a<1图象性质定义域R;值域(0,+∞)过点(0,1),即x=0时,y=1在R上是增函数在R上是减函数x>0时,ax>1;x<0时,0<ax<1x>0时,0<ax<1;x<0时,ax>1y=1xyy=ax(a>1)Oy=1xyy=ax(0<a<1)O(0,1)(0,1)1.对数函数的定义:函数叫做对数函数;对数函数的定义域为试一下:甄别真假对数函数2.对数函数的图象(几何画板探究)a>102、:(0,+∞);值域:R在(0,+∞)上是减函数在(0,+∞)上是增函数过点(1,0),即当x=1时,y=0.x∈(0,1)时,y<0;x∈(1,+∞)时,y>0.x∈(0,1)时,y>0x∈(1,+∞)时,y<0.范例赏析例1求下列函数的定义域:(1)(2)例2比较下列各组数中两个值的大小:(1)(2)(3)范例赏析例3已知下列不等式,比较正数m、n的大小:(1)(2)当堂检测小结1.两个同底数的对数比较大小的一般步骤:①确定所要考查的对数函数;②根据对数底数判断对数函数增减性;③比较真数大小,然后利用对数函数的增减性判断两对数值的大小.2.分类讨论的思想。课3、后作业课本:P747、8
2、:(0,+∞);值域:R在(0,+∞)上是减函数在(0,+∞)上是增函数过点(1,0),即当x=1时,y=0.x∈(0,1)时,y<0;x∈(1,+∞)时,y>0.x∈(0,1)时,y>0x∈(1,+∞)时,y<0.范例赏析例1求下列函数的定义域:(1)(2)例2比较下列各组数中两个值的大小:(1)(2)(3)范例赏析例3已知下列不等式,比较正数m、n的大小:(1)(2)当堂检测小结1.两个同底数的对数比较大小的一般步骤:①确定所要考查的对数函数;②根据对数底数判断对数函数增减性;③比较真数大小,然后利用对数函数的增减性判断两对数值的大小.2.分类讨论的思想。课
3、后作业课本:P747、8
此文档下载收益归作者所有