2、的图象、性质解决实际问题.学习重点:建立坐标系,利用二次函数的图象、性质解决实际问题.课件说明问题1解决上节课所讲的实际问题时,你用到了什么知识?所用知识在解决生活中问题时,还应注意哪些问题?1.复习利用二次函数解决实际问题的方法2.列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;3.在自变量的取值范围内,求出二次函数的最大值或最小值.归纳:1.由于抛物线y=ax2+bx+c的顶点是最低(高)点,当时,二次函数y=ax2+bx+c有最小(大)值1.复习利用二次函数解决实际问题的方法问题2图中是抛物线形拱桥,当拱顶离水面2m时,水面宽4m.水面下降1m,
3、水面宽度增加多少?2.探究“拱桥”问题(1)求宽度增加多少需要什么数据?(2)表示水面宽的线段的端点在哪条曲线上?(3)如何求这组数据?需要先求什么?(4)图中还知道什么?(5)怎样求抛物线对应的函数的解析式?2.探究“拱桥”问题解一解二解三探究3图中是抛物线形拱桥,当水面在时,拱顶离水面2m,水面宽4m,水面下降1m时,水面宽度增加了多少?继续问题3如何建立直角坐标系?2.探究“拱桥”问题l问题4解决本题的关键是什么?2.探究“拱桥”问题解一以抛物线的顶点为原点,以抛物线的对称轴为轴,建立平面直角坐标系,如图所示.∴可设这条抛物线所表示的二次函数的解析式为:当拱桥离水面2m时,水
4、面宽4m即抛物线过点(2,-2)∴这条抛物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-3,这时有:∴当水面下降1m时,水面宽度增加了返回解二如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线的对称轴为y轴,建立平面直角坐标系.当拱桥离水面2m时,水面宽4m即:抛物线过点(2,0)∴这条抛物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-1,这时有:∴当水面下降1m时,水面宽度增加了∴可设这条抛物线所表示的二次函数的解析式为:此时,抛物线的顶点为(0,2)返回解三如图所示,以抛物线和水面的两个交点的连线为x轴,以其中的一个交点(如左边的点)为原点,建
5、立平面直角坐标系.∴可设这条抛物线所表示的二次函数的解析式为:∵抛物线过点(0,0)∴这条抛物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-1,这时有:∴当水面下降1m时,水面宽度增加了此时,抛物线的顶点为(2,2)∴这时水面的宽度为:返回试一试如图所示,有一座抛物线型拱桥,在正常水位AB时,水面宽20米,水位上升3米,就达到警戒线CD,这时水面宽为10米。(1)求抛物线型拱桥的解析式。(2)若洪水到来时,水位以每小时0.2米的速度上升,从警戒线开始,在持续多少小时才能达到拱桥顶?(3)若正常水位时,有一艘宽8米,高2.5米的小船能否安全通过这座桥?AB20mCD实际
6、问题抽象转化数学问题运用数学知识问题的解决谈谈你的学习体会解题步骤:1、分析题意,把实际问题转化为数学问题,根据已知条件建立适当的平面直角坐标系。2、选用适当的解析式求解。3、根据二次函数的解析式解决具体的实际问题。例:某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m.这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由.解:如图,以AB所在的直线为x轴,以AB的垂直平分线为y轴,建立平面直角坐标系.∵AB=4∴A(-2,0)B(2,0)∵OC=4
7、.4∴C(0,4.4)设抛物线所表示的二次函数为∵抛物线过A(-2,0)∴抛物线所表示的二次函数为∴汽车能顺利经过大门.如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线可以用表示.(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?(1)卡车可以通过.提示:当x=±1时,y=3.75,3.75+2>4.(2)卡车可以通过.提示:当x=±2时,y=3,3+2>4.xy-1-3-1-3131