欢迎来到天天文库
浏览记录
ID:36087956
大小:1.19 MB
页数:19页
时间:2019-05-05
《健康街小学 王俊莲抽屉原理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、抽屉原理研究:将四根小棒放入三个杯子中,会有什么发现?枚举假设计算推广把四根小棒放入三个杯子中,不管怎么放,总有一个杯子里至少放进2根小棒为什么?择优枚举法:因为一共有4种放法(4,0,0)(2,1,1)(3,1,0)(2,2,0)所以至少有2根小棒放进同一个杯子。发现:把四根小棒放入三个杯子中,不管怎么放,总有一个杯子里至少放进2根小棒返回发现:把四根小棒放入三个杯子中,不管怎么放,总有一个杯子里至少放进2根小棒假设法:如果每个杯子里只放1根小棒,最多放3根。剩下的一根还要放进其中的一个杯子里。所以至少有2根小棒放进同一个杯子。返回计算的方法:因为4÷3=1……11
2、+1=2所以不管怎么放,总有一个杯子里至少放进2根小棒返回把四根小棒放入三个杯子中,不管怎么放,总有一个杯子里至少放进2根小棒,为什么?枚举法:因为一共有4种放法(4,0,0)(2,1,1)(3,1,0)(2,2,0)所以至少有2根小棒放进同一个杯子。假设法:如果每个杯子里只放1根小棒,最多放3根。剩下的一根还要放进其中的一个杯子里。所以至少有2根小棒放进同一个杯子。计算的方法:因为4÷3=1……11+1=2所以不管怎么放,总有一个杯子里至少放进2根小棒推广把7枝小棒放进6个杯子呢?把10枝小棒放进9个杯子呢?把100枝小棒放进99个杯子里呢?你发现了什么?只要放的小
3、棒数比杯子的数量多1,不论怎么放,总有一个杯子里至少放进2枝小棒。继续(总有一个杯子里至少放进2根小棒。)(总有一个杯子里至少放进2根小棒。)(总有一个杯子里至少放进2根小棒。)“抽屉原理”,最先是由19世纪的德国数学家狄里克雷应用于解决问题时提出的,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄里克雷原理”,又把它叫做“鸽巢原理”。“狄里克雷”发现这个规律后,并没有停止对现象的研究,又发现了问题。现在你也想一想,还有没有值得我们继续研究的问题呢?返回如果把5根小棒放进2个杯子里,不管怎么放,总有一个杯子里至少有几根小棒呢?因为5÷
4、2=2(根)…..1(根)2+1=3(根)所以不管怎么放,总有一个杯子里至少有3根小棒。把7根小棒放进2个杯子里,不管怎么放,总有一个杯子里至少有几根小棒呢?把19根小棒放进5个杯子里,不管怎么放,总有一个杯子里至少有几根小棒呢?把11根小棒放进4个杯子里,不管怎么放,总有一个杯子里至少有几根小棒呢?把小棒放进杯子里(小棒比杯子数量多),不管怎么放,总有一个杯子里至少有几根小棒?可以怎么求?只要用小棒数除以杯子数,用所得的商加上1就可以求出至少数了。(物体数)(抽屉数)如果把100小棒放进6个杯子里,不管怎么放,总有一个杯子里至少有几根小棒?因为100÷6=16(根)
5、……4(根)16+1=17(根)所以总有一个杯子里至少有17根小棒。7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?因为7÷5=1(只)……2(只)1+1=2(只)所以7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?因为8÷3=2(只)……2(只)2+1=3(只)所以8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。23本书放进6个抽屉里,至少有几本书在同一个抽屉里,?为什么因为23÷6=3(本)……5(本)3+1=4(本)所以23本书放进6个抽屉里,至少有4本书在同一个抽屉
6、里从电影院中任意找来13个观众,至少两个人属相相同。为什么?13人12属12个抽屉13个苹果三个小朋友同行,其中必有两个小朋友性别相同。为什么?三个人性别小朋友思考从()个抽屉中(填最大数)拿出25个苹果,才能保证一定能找到一个抽屉,从它当中至少拿了7个苹果。课堂小结我们学习了抽屉原理的一般形式,也就是要把a个物体放进n个抽屉,如果a/n=b……c(c≠0),那么一定有一个抽屉至少放(b+1)个物体。
此文档下载收益归作者所有