高考数学大二轮复习第1部分专题2函数与导数第3讲导数的简单应用练习

高考数学大二轮复习第1部分专题2函数与导数第3讲导数的简单应用练习

ID:36064163

大小:167.86 KB

页数:10页

时间:2019-05-03

高考数学大二轮复习第1部分专题2函数与导数第3讲导数的简单应用练习_第1页
高考数学大二轮复习第1部分专题2函数与导数第3讲导数的简单应用练习_第2页
高考数学大二轮复习第1部分专题2函数与导数第3讲导数的简单应用练习_第3页
高考数学大二轮复习第1部分专题2函数与导数第3讲导数的简单应用练习_第4页
高考数学大二轮复习第1部分专题2函数与导数第3讲导数的简单应用练习_第5页
资源描述:

《高考数学大二轮复习第1部分专题2函数与导数第3讲导数的简单应用练习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第一部分专题二第三讲导数的简单应用A组1.曲线y=xex+2x-1在点(0,-1)处的切线方程为(A)A.y=3x-1     B.y=-3x-1C.y=3x+1D.y=-2x-1[解析] k=y′

2、x=0=(ex+xex+2)

3、x=0=3,∴切线方程为y=3x-1,故选A.2.(文)如图,函数y=f(x)的图象在点P处的切线方程为x-y+2=0,则f(1)+f′(1)=(D)A.1B.2C.3D.4[解析] 由条件知(1,f(1))在直线x-y+2=0上,且f′(1)=1,∴f(1)+f′(1)=3+1=4.(理)(2017

4、·烟台质检)在等比数列{an}中,首项a1=,a4=(1+2x)dx,则该数列的前5项和S5为(  C  )A.18    B.3    C.    D.[解析] a4=(1+2x)dx=(x+x2)

5、=18,因为数列{an}是等比数列,故18=q3,解得q=3,所以S5==.故选C.3.已知常数a、b、c都是实数,f(x)=ax3+bx2+cx-34的导函数为f′(x),f′(x)≤0的解集为{x

6、-2≤x≤3},若f(x)的极小值等于-115,则a的值是(  C  )A.-B.C.2D.5[解析] 依题意得f′(x)=3a

7、x2+2bx+c≤0的解集是[-2,3],于是有3a>0,-2+3=-,-2×3=,∴b=-,c=-18a,函数f(x)在x=3处取得极小值,于是有f(3)=27a+9b+3c-34=-115,-a=-81,a=2,故选C.4.若函数f(x)=loga(x3-ax)(a>0,a≠1)在区间(-,0)内单调递增,则a的取值范围是(  B  )A.[,1)B.[,1)C.(,+∞)D.(1,)[解析] 由x3-ax>0得x(x2-a)>0.则有或所以x>或-

8、-ax,则g′(x)=3x2-a,当g′(x)≥0时,x≥,不合要求,由g′(x)<0得-

9、,若f(x)在区间[,2]上是增函数,则实数a的取值范围为[,+∞).[解析] 由题意知f′(x)=x+3a-≥0在[,2]上恒成立,即3a≥-x+在[,2]上恒成立.又y=-x+在[,2]上单调递减,∴(-x+)max=,∴3a≥,即a≥.7.(文)若函数y=-x3+ax有三个单调区间,则a的取值范围是a>0.[解析] y′=-x2+a,若y=-x3+ax有三个单调区间,则方程-x2+a=0应有两个不等实根,故a>0.(理)(2018·临沂模拟)如图,已知A(0,),点P(x0,y0)(x0>0)在曲线y=x2上,若阴影部分

10、面积与△OAP面积相等,则x0=.[解析] 因为点P(x0,y0)(x0>0)在曲线y=x2上,所以y0=x,则△OAP的面积S=

11、OA

12、

13、x0

14、=×x0=x0,阴影部分的面积为∫x00x2dx=x3

15、x00=x,因为阴影部分面积与△OAP的面积相等,所以x=x0,即x=.所以x0==.8.已知函数f(x)=(x+1)lnx-a(x-1).(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(2)若当x∈(1,+∞)时,f(x)>0,求实数a的取值范围.[解析] (1)f(x)的定义域为(0,+∞).当a=4时

16、,f(x)=(x+1)lnx-4(x-1),f′(x)=lnx+-3,f′(1)=-2,f(1)=0.曲线y=f(x)在(1,f(1))处的切线方程为2x+y-2=0.(2)当x∈(1,+∞)时,f(x)>0等价于lnx->0.设g(x)=lnx-,则g′(x)=-=,g(1)=0.①当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)内单调递增,因此g(x)>g(1)=0;②当a>2时,令g′(x)=0,得x1=a-1-,x2=a-1+.由x2>1和x1x2=1

17、,得x1<1,故当x∈(1,x2)时,g′(x)<0,g(x)在(1,x2)内单调递减,此时g(x)0,r>0).(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若=400,求f(x)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。