2019届高三数学备考冲刺140分问题22数列与不等式的相结合问题(含解析)

2019届高三数学备考冲刺140分问题22数列与不等式的相结合问题(含解析)

ID:36034092

大小:405.38 KB

页数:11页

时间:2019-05-02

2019届高三数学备考冲刺140分问题22数列与不等式的相结合问题(含解析)_第1页
2019届高三数学备考冲刺140分问题22数列与不等式的相结合问题(含解析)_第2页
2019届高三数学备考冲刺140分问题22数列与不等式的相结合问题(含解析)_第3页
2019届高三数学备考冲刺140分问题22数列与不等式的相结合问题(含解析)_第4页
2019届高三数学备考冲刺140分问题22数列与不等式的相结合问题(含解析)_第5页
资源描述:

《2019届高三数学备考冲刺140分问题22数列与不等式的相结合问题(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、问题22数列与不等式的相结合问题一、考情分析数列与不等式的交汇题,是高考数学的常见题型.对数列不等式综合题的解答,往往要求能够熟练应用相关的基础知识和基本技能,同时还应具备比较娴熟的代数变换技能和技巧.近年数列与不等式交汇题考查点:1.以客观题考查不等式的性质、解法与数列、等差数列、等比数列的简单交汇.2.以解答题以中档题或压轴题的形式考查数列与不等式的交汇,还有可能涉及到导数、解析几何、三角函数的知识等,深度考查不等式的证明(主要比较法、综合法、分析法、放缩法、数学归纳法、反证法)和逻辑推理能力及

2、分类讨论、化归的数学思想,试题新颖别致,难度相对较大.3.将数列与不等式的交汇渗透于递推数列及抽象数列中进行考查,主要考查转化及方程的思想.数列求和是历年高考命题的热点,可以以客观题形式考查,也可以以解答题形式考查数列,公式求和、裂项求和、错位相减法求和是常考问题.二、经验分享常见的数列不等式大多与数列求和或求积有关,其基本结构形式有如下4种:①形如(为常数);②形如;③形如;④形如(为常数).依据---不等式的性质:(1)不等式的传递性:若,则(此性质为放缩法的基础,即若要证明,但无法直接证明,则

3、可寻找一个中间量,使得,从而将问题转化为只需证明即可)(2)等量加不等量为不等量:若,则,此性质可推广到多项求和:若,则:(3)若需要用到乘法,则对应性质为:若,则,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数常用的放缩手段:增加(或减少)某些项;增大分子(或减小分母);增大(或减小)被开方数;利用二项式定理;利用基本不等式;利用函数的单调性.常用的放缩技巧:(1)常见的数列求和方法和通项公式特点:①等差数列求和公式:,(关于的一次函数或常值函数)②等比数列求和公式:,(关于的指数类函数

4、)③错位相减:通项公式为“等差等比”的形式④裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:①在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手②在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢.④若放缩后求和发现放“过”了,即与所证矛盾,

5、通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩.从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试.(3)放缩构造裂项相消数列与等比数列的技巧:①裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)②等比数列:所面对的问题通常为“常数”的形式,所构造的等比数列的公比也要满足,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,,常数

6、可视为的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可.例如常数,即可猜想该等比数列的首项为,公比为,即通项公式为.注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响(4)与数列中的项相关的不等式问题:①此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形②在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累

7、乘”的形式,即或(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为,另一侧为求和的结果,进而完成证明三、知识拓展常见的放缩变形:(1),其中:可称为“进可攻,退可守”,可依照所证不等式不等号的方向进行选择.注:对于,可联想到平方差公式,从而在分母添加一个常数,即可放缩为符合裂项相消特征的数列,例如:,这种放缩的尺度要小于(1)中的式子.此外还可以构造放缩程度更小的,如:(2),从而有:注:对于还可放缩为:(3)分子分母同加常数:此结论容易记混,通常在解题时,这种方法作为一种思考的

8、方向,到了具体问题时不妨先构造出形式再验证不等关系.(4)可推广为:同类放缩常见的有:(1)或(2);(3)或;(4)或(平方型、立方型、根式型都可放缩为裂项相消模型)(5)或、(指数型可放缩为等比模型)(6);(7);(8)(奇偶型放缩为可求积).补充:一般地,形如或(这里)的数列,在证明(为常数)时都可以提取出利用指数函数的单调性将其放缩为等比模型.四、题型分析(一)最值问题求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。