欢迎来到天天文库
浏览记录
ID:360096
大小:308.50 KB
页数:6页
时间:2017-07-27
《数学中的问题解决 毕业论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、2008届专科生毕业论文题目:数学中的问题解决作者姓名:学号:20052319系(院)、专业:数学教育指导教师姓名:指导教师职称:20年5月10日数学中的问题解决摘要:问题解决受到了世界各国数学界普遍重视,不仅成为国际数学教育界研究的重要课题,而且是继「新数运动」和「回到基垂之后兴起的80年代和90年代国际数学教育发展的潮流。关键词:问题理解问题解决1980年4月,以美国数学教师全国联合会(NCTM)的名义,公布了一份名曰《行动纲领-80年代数学教育的议程》的文件,首次提出必须把问题解决(pro
2、blemsolving)作为80年代中学数学的核心。在1980年8月的第四届国际数学会议上,美国数学教师协会提出了80年代中学数学教育行动计划的八点建议,指出80年代中学数学教育改革焦点是培养学生问题解决的能力,这种力量衡量个人和国家数学水平的标志。到1988年召开的第六届国际数学教育会议上,则将问题解决列为大会的七个主要研究课题之一,在课题报告中,几次明确提出问题解决?模拟化和应用必须成为从中学到大学的所有数学课程的一部份。一、对「问题」的理解 对「问题」的理解与关于甚么是「问题解决」的
3、分析直接相关,讨论和研究「问题解决」的一个主要困难就在于对甚么是真正的「问题」缺少明晰的一致意见。 当代美国著名数学家哈尔莫斯(P.R.Halmos)曾说:「问题是数学的心脏。」美籍匈牙利著名数学教育家波利亚(G.Polya)在《数学的发现》一书中曾给出问题明确含义,并从数学角度对问题作了分类。他指出,所谓「问题」就是意味着要去寻找适当的行动,以达到一个可见而不立即可及的目标。《牛顿大词典》对「问题」的解释是:指那些并非可以立即求解或较困难的问题(question),那种需要探索、思考和讨
4、论的问题,那种需要积极思维活动的问题。 在1988年的第六屇国际数学教育大会上,「问题解决、模型化及应用」课题组提交的课题报告中,对「问题」给出了更为明确而富有启发意义的界定,指出一个问题是对人具有智力挑战特征的、没有现成的直接方法、程序或算法的待解问题情境。该课题组主席奈斯(M.Niss)还进一步把「数学问题解决」中的「问题」具体分为两类:一类是非常规的数学问题;另一类是数学应用问题。这种界定现已经逐渐为人们所接受。 我国的张奠宙、刘鸿坤教授在他们的《数学教育学》里的”数学教育中的
5、问题解决”中,对甚么是问题及问题与习题的区别作了很好的探讨,根据他们的思想观点,我们可对「问题」作以下几个方面的理解和认识。 *问题是一种情境状态。这种状态会与学生已有的认知结构之间产生内部矛盾冲突,在当前状态下还没有易于理解的、没有完全确定的解答方法或法则。换句话说,所谓有问题的状态,即这个人面临着他们不认识的东西,对于这种东西又不能仅仅应用某种典范的解法去解答,因为一个问题一旦可以使使用以前的算法轻易地解答出来,那么它就不是一个问题了。 *问题解决中的「问题」,并不包括常规数学问
6、题,而是指非常规数学问题和数学的应用问题。这里的常规数学问题,就是指课本中既已唯一确定的方法或可以遵循的一般规则、原理,而解法程序和每一步骤也都是完全确定的数学问题。 *问题是相对的。问题因人因时而宜,对于一个人可能是问题,而对于另一个人只不过是习题或练习,而对于第三个人,却可能是所然无味了。另一方面,随着人们的数学知识的增长、能力的提高,原先是问题的东西,现在却可能变成常规的问题,或者说已经构不成问题了。例如,学生在学习因式分解之前,对于「求方程﹕x3-6x2+5x=0的解」,构成问题,
7、而在学习了因式分解之后,已熟练地掌握了abc=0;则a=0或b=0或c=0,那么,此时前述求方程的根已对他不构成问题了,而当前状态下对于「求方程x3-6x2-4x=6的根」则构成一个问题。 *问题情境状态下,要对学生本人构成问题,必须满足三个条件:(1)可接受性。指学生能够接受这个问题,还可表现出学生对该问题的兴趣。(2)障碍性。即学生当时很难看出问题的解法、程序和答案,表现出对问题的反应和处理的习惯模式的失败。(3)探索性。该问题又能促使学生深入地研究和进一步的思考,展开各种探究活动,寻
8、求新的解题途径,探求新的处理方法。 *问题解决中的「问题」与「习题」或「练习」是有区别的,其重要区别在于:(1)性质不同。中学数学课本中的「习题」或者「练习」属于「常规问题」,教师在课堂中已经提供了典范解法,而学生只不过是这种典范解法的翻版应用,一般不需要学生较高的思考。因此,实际上学生只不过是在学习一种算法,或一种技术,一种应用于同一类「问题」的技术,一种只要避免了无意识的错误就能保证成功的技术。(2)服务的目的不同。尽管有些困难的习题对大部份学生实际上也可能是真正的问题,但数学课本中的
此文档下载收益归作者所有