欢迎来到天天文库
浏览记录
ID:35969539
大小:379.55 KB
页数:9页
时间:2019-04-29
《椭圆第二定义教学设计课题》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、椭圆第二定义教学设计一、背景分析:本节课是在学生学习完了椭圆定义及其标准方程、椭圆简单几何性质的基础上进行的;是对椭圆性质(离心率)在应用上的进一步认识;着重引出椭圆的第二定义、准线方程,掌握椭圆定义的应用。教学中力求以教师为主导,以学生为主体,充分结合多媒体技术,以“形”为诱导,以椭圆的二个定义为载体,以培养学生的思维能力、探究能力、归纳总结的能力以及等价转化思想为重点的教学思想.二、教材的地位和作用:圆锥曲线是解析几何的重要内容,而椭圆又是高考的热点问题之一;能否学好椭圆的定义、标准方程及其简单的几何性质,是学生能否比较系统地学好另外两种圆锥曲线的基础,甚至是学生能否学
2、好解析几何的关键。而椭圆在教材中具有“承上启下”的作用,从图形和第一定义来看椭圆与圆比较接近,从而对于学生来说学习完圆后再学习椭圆比较容易接受;而椭圆的第二定义即“到定点的距离与到定直线的距离的比是常数的点的轨迹”,正好可以把椭圆、双曲线、抛物线这三种圆锥曲线有机地统一起来,使学生对圆锥曲线有个整体知识体系,所以说这个定义在整章起到了一种“纽带”的作用.三、学法指导:以问题为诱导,结合图形,引导学生进行必要的联想、类比、化归、转化.复习回顾问题推广引出课题典型例题课堂练习归纳小结四、教学目标知识目标:椭圆第二定义、准线方程;能力目标:1、使学生了解椭圆第二定义给出的背景;2
3、、了解离心率的几何意义;3、使学生理解椭圆第二定义、椭圆的准线定义;4、使学生掌握椭圆的准线方程以及准线方程的应用;5、使学生掌握椭圆第二定义的简单应用;9情感与态度目标:通过问题的引入和变式,激发学生学习的兴趣,应用运动变化的观点看待问题,体现数学的美学价值.五、教学重点:椭圆第二定义、准线方程;六、教学难点:椭圆的第二定义的简单运用;七、教学方法:创设问题、启发引导、探究活动、归纳总结.八、教学过程(一)、引入课题(上一节的例题得出的结果)例、椭圆的方程为,M1为椭圆上的点,若点M1为(4,y0)不求出点M2的纵坐标,你能求出这点到焦点F(3,0)的距离吗?解:且代入消
4、去得【推广】根据上面这个问题的解题思路你能否将椭圆上任一点到焦点的距离表示成点M横坐标的函数吗?解:代入消去得问题:你能将所得函数关系叙述成命题吗?(用文字语言表述)椭圆上的点M到右焦点的距离与它到定直线的距离的比等于离心率例4:已知动点到定点的距离与它到定直线的距离的比等于常数求动点点的轨迹。(请学生自己探索,并引导学生从以前学的求曲线方程的方法进行证明)9证明过程:设d是点M到直线的距离,根据题意,所求轨迹就是集合MLF1F2L’由此得,将上式两边平方,并化简,得设,就可以化成这是椭圆的标准方程,所以点M的轨迹是长轴、短轴长分别为、的椭圆。(如图所示)【设计目的】通过“
5、前节课的例题”一方面引导学生注意对前面学过的知识的反思和巩固。另一方面想通过数学符号与文字语言的互译让学生自己注意命题“椭圆上的一点到焦点的距离可以表示成横坐标的函数”然后再由这个函数关系推导出椭圆的标准方程,这样对于学生来说可能就不会那么突然地给出那么多巧合的数据了。(三)、引出课题【椭圆的第二定义】当点与一个定点的距离和它到一条定直线的距离的比是常数时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数是椭圆的离心率.对于椭圆,相应于焦点的准线方程是.根据对称性,相应于焦点的准线方程是.同理对于椭圆的准线方程是.可见椭圆的离心率就是椭圆上一点到焦点的距离与
6、到相应准线距离的比,这就是离心率的几何意义.(四)、典型例题例1、①求椭圆的右焦点和右准线;左焦点和左准线;②椭圆上的点到左准线的距离是,求到左焦点的距离为.9变式:求到右焦点的距离为.解:①由题意可知右焦点右准线;左焦点和左准线椭圆可化为标准方程为:,其中所以,右焦点为,右准线为左焦点为,左准线为【小结】求椭圆的准线方程一定要化成标准形式,然后利用准线公式即可求出;②记椭圆的左右焦点分别为到左右准线的距离分别为由椭圆的第二定义可知:又由椭的第一定义可知:变式:点M到左准线的距离是,所以点M到右准线的距离为【小结】椭圆第二定义的应用和第一定义的应用;注意椭圆中的几个定值的灵
7、活使用,,,焦距=,两准线之间的距离=。例2:已知椭圆的两条准线的方程为,离心率为,求此椭圆的标准方程。解:【小结】注意准线方程给出的信息,焦点的位置和的值;9例3:(备用)已知椭圆上一点,到其左、右两焦点距离之比为,求点到两准线的距离及点的坐标。【考查内容】椭圆第二定义的应用:到焦点的距离与到准线的距离的互化解:设,左、右焦点分别为、由已知的椭圆的方程可得又。设到两准线的距离分别为,,,同理,而,即,则,,代入椭圆方程,得,故点的坐标为。【设计目的】通过例题教学,使学生掌握椭圆标准位置时准线方程的两种形式,能根据
此文档下载收益归作者所有