本学期的选修课我选择了穆春来老师的

本学期的选修课我选择了穆春来老师的

ID:35963233

大小:78.01 KB

页数:79页

时间:2019-04-28

本学期的选修课我选择了穆春来老师的_第1页
本学期的选修课我选择了穆春来老师的_第2页
本学期的选修课我选择了穆春来老师的_第3页
本学期的选修课我选择了穆春来老师的_第4页
本学期的选修课我选择了穆春来老师的_第5页
资源描述:

《本学期的选修课我选择了穆春来老师的》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、本学期的选修课我选择了穆春来老师的《数学思维与数学文化》 ,起初选择这门课是看到了“思维”二字,想通过这堂课能够提高自己思考问题的能力,同时学习用数学的方式去解决问题。老师的第一堂课,就告诉我们:数学思维不是靠几节课就能讲的出来的,或者说不是通过几节课就能形成一套完善的数学思维方式,这要靠平时的积累。大概意思是这样的吧,我对此深表赞同。不过 “文化”一词韵味十足,值得一听。 数学作为一种文化现象,早已是人们的常识。历史地看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家。最著名的如柏拉图和达·芬奇。晚近以来,爱因斯

2、坦、希尔伯特、罗素、冯·诺依曼等文化名人也都是20世纪数学文明的缔造者。 数学是研究现实世界中的数量关系与空间形式的一门科学。由于实际的需要,数学在古代就产生了,现在已发展成为一个分支众多的庞大体系。数学与其他科学一样,反映了客观世界的规律,并成为理解自然、改造自然的有力武器。 对任何一门科学的理解,单有这门课学的具体知识是不够的,哪怕你对这门科学的知识掌握得足够丰富,还需要对这门科学的整体有正确的观点,需要了解这门学科的本质。我们的目的就是从历史的、哲学的和文化的高度给出关于数学本质的一般概念。 首先老师给我们讲了数

3、学与美。中国古代著名哲学家庄子说:“判天地之美,析万物之理。”日本物理学家,诺贝尔奖得主汤川秀树把这两句话印在他的书的扉页上,作为现代物理的指导思想及最高美学原则。这两句话也是我们学习与研究数学的指导思想和最高美学原则。 当老师把这两句话展现给我们时,我震惊了。古代圣贤庄子通过简简单单的十个字,便道出了最高美学原则。通过老师的讲解,为我们展现了数学精神的魅力,阐述了数学推理之妙谛。但数学之美的面纱是慢慢揭开的,数学推理的妙谛是逐渐展现的。这涉及到科学与艺术的关系,而艺术与科学的联系是天然的。著名物理学家李政道说得好:“

4、科学和艺术是不可分割的,正像一枚硬币的两面。它们共同的基础是人类的创造力,它们追求的目标都是真理的普遍性。”  数学本身就是美学的四大构件之一。这四大构件是,史诗、音乐、造型(绘画、建筑等)和数学。因而数学教育是审美素质教育的一部分。这也让我颇为震惊。看来数学与美学还真是息息相关呀。 那么数学到底美在何处呢? 一、数学的美美在思维。数学,一开始就以抽象的形式出现。有些同学说数学枯燥,除了概念就是公式,毫无感情色彩。但是如果深入的去体会数学公式、定理等知识的诞生过程,就会发现这其中所运用的数学思维是多么的令人着迷,所么的

5、美妙。 二、数学的美美在作用。数学是研究“数量关系”与“空间形式”的科学。 哪儿有数,哪儿有形,哪儿就少不了用数学。数学,在改造人类生存环境方面起着很大的作用。由于数学能揭示事物的普遍规律,就有一法多用性和一理多用性,因而已渗透到各门学科中,人们研究任何一门自然学科都离不开数学的基本原理。 三、数学的美美在形式。 数学具有美的、和谐的形式,具有对称、平衡、比例、规则性和秩序性等特征。而这一切特征在数学中都有具体的表现。 著名的美学规律“黄金分割”把一条线段分成长短两节,使短节和长节的比恰好等于长节与全长的比。实践表明这

6、一比例是最美妙的比例。美神维纳斯的美,关键一点是她的身材比例恰好符合黄金分割律。 由于数学是使人产生美感的基础,人们在认识世界的过程中。都有意无意的应用数学知识。在我们日常生活和艺术活动中,随处可见有数学的形式美。我们的房屋建筑、我们用的桌椅、甚至茶杯,都具有优美的几何形状,既美观又实用。在教学中适当的给学生讲讲与数学形式美有关的小知识,不仅能拓宽他们的视野,还能激发他们的学习兴趣。 所以,数学也是一种美,学习数学更是一种美的享受。 虽然数学很美妙,但是在它的发展过程中也经历了一些磨难——三次数学危机。 第一次数学危机

7、:无理数的发现 大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。当时的毕达哥拉斯学派认为:宇宙间一切事物都可归结为整数或整数之比,他们的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形。这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。     到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。这次危机表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由

8、此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命! 第二次数学危机:无穷小是零吗?    1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去x

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。