欢迎来到天天文库
浏览记录
ID:35957189
大小:1.26 MB
页数:27页
时间:2019-04-28
《高中数学必修1-5知识点归纳及公式大全-(30902)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、--WORD格式--专业资料--可编辑---必修1数学知识点第一章、集合与函数概念§1.1.1、集合1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。集合三要素:确定性、互异性、无序性。2、只要构成两个集合的元素是一样的,就称这两个集合相等。3、常见集合:正整数集合:或,整数集合:,有理数集合:,实数集合:.4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集。记作.2、如果集合,但存在元素,且,则称集合
2、A是集合B的真子集.记作:AB.3、把不含任何元素的集合叫做空集.记作:.并规定:空集合是任何集合的子集.4、如果集合A中含有n个元素,则集合A有个子集.§1.1.3、集合间的基本运算1、一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作:.2、一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作:.3、全集、补集?§1.2.1、函数的概念1、设A、B是非空的数集,如果按照某种确定的对应关系,使对于集合A中的任意一个数,在集合B中都有惟一确定的数和它对应,那么就称为集合A到集
3、合B的一个函数,记作:.2、一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法1、函数的三种表示方法:解析法、图象法、列表法.§1.3.1、单调性与最大(小)值1、注意函数单调性证明的一般格式:解:设且,则:=…§1.3.2、奇偶性1、一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为偶函数.偶函数图象关于轴对称.2、一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为奇函数.奇函数图象关于原点对称.第二章、基本初等函
4、数(Ⅰ)§2.1.1、指数与指数幂的运算1、一般地,如果,那么叫做的次方根。其中.----WORD格式--专业资料--可编辑---2、当为奇数时,;当为偶数时,.3、我们规定:⑴; ⑵;4、运算性质:⑴;⑵;⑶.§2.1.2、指数函数及其性质1、记住图象:§2.2.1、对数与对数运算1、;2、.3、,.4、当时:⑴;⑵;⑶.5、换底公式:.----WORD格式--专业资料--可编辑---5、.§2..2.2、对数函数及其性质1、记住图象:§2.3、幂函数1、几种幂函数的图象:第三章、函数的应用§3.1.1、方程的根与函数的
5、零点1、方程有实根函数的图象与轴有交点函数有零点.2、性质:如果函数在区间上的图象是连续不断的一条曲线,并且有,那么,函数在区间内有零点,即存在,使得,这个也就是方程的根.§3.1.2、用二分法求方程的近似解1、掌握二分法.§3.2.1、几类不同增长的函数模型§3.2.2、函数模型的应用举例1、解决问题的常规方法:先画散点图,再用适当的函数拟合,最后检验.必修2数学知识点1、空间几何体的结构----WORD格式--专业资料--可编辑---⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。⑵棱柱:有两个
6、面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。2、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。3、空间几何体的表面积与体积⑴圆柱侧面积;⑵圆锥侧面积:⑶圆台侧面积:⑷体积公式:;;⑸球的表面积和体积:.第二章:点、直线、平面之间的位置关系1、公理1:如果一条直线上两点在
7、一个平面内,那么这条直线在此平面内。2、公理2:过不在一条直线上的三点,有且只有一个平面。3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。4、公理4:平行于同一条直线的两条直线平行.5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。6、线线位置关系:平行、相交、异面。7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。8、面面位置关系:平行、相交。9、线面平行:----WORD格式--专业资料--可编辑---⑴判定:平面外一条直线与此平面内的一条直线平行,则
8、该直线与此平面平行。⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。10、面面平行:⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。11、线面垂直:⑴定义:如果一条直线垂
此文档下载收益归作者所有