资源描述:
《导数经济意义及在经济分析中应用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、导数经济意义及在经济分析中应用【摘要】导数在经济领域中的应用非常广泛,运用导数可以对经济活动中的实际问题进行边际分析、弹性分析和优化分析,从而为企业经营者进行科学决策提供量化依据。【关键词】导数边际分析弹性分析最优化分析一个企业或者一个商店最关心的是如何以最小成本达到利润最大。经济学中常用到边际概念分析一个变量y关于另一个变量x的变化情况。边际概念是当x在某一给定值的附近发生微小变化时y的变化情况,它发映了y的瞬间的变化,而刻画这种瞬间微小变化的数学工具便是导数。一、导数的概念设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在点x0处取得增量Δx(点x0+Δx仍在该邻域内)时,相
2、应地函数y取得增量Δy=f(x0+Δ)-f(x0);如果Δy与Δx之比当Δx→0时的极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数,记为f’(x0),即f’(x0)==。若函数y=f(x)在某区间内每一点都可导,则称y=f(x)在该区间内可导,记f’(x)为y=f(x)在该区间内的可导函数(简称导数)。二、经济分析中常用的函数1、需求函数与供给函数(1)需求函数。设Q表示某种商品的需求量,P表示此种商品的价格,则用Q=f(P)表示对某种商品的需求函数。一般来说,对某种商品的需求量Q随价格减少而增加,随价格增加而减少,所以需求函数是单调减少的函
3、数。(2)供给函数。站在卖方的立场上,设Q表示对某种商品的供给量,P表示此种商品的价格,则用Q=F(P)表示某种商品的供给函数。一般来说,作为卖方,对某种商品的供给量Q是随价格P的增加而增加,随价格P的减少而减少,所以供给函数是单调增加的函数。2、成本函数与平均成本函数(1)成本函数。产品的成本一般有两类:一类随产品的数量变化,如需要的劳动力,消耗的原料等;这种生产成本称为可变成本。另一类成本无论生产水平如何都固定不变,如房屋、设备的折旧费、保险费等,称为固定成本。设Q为某种产品的产量,C为生产此种产品的成本,生产每个单位产品的成本为a,固定成本为C0,则成本函数为C=C(Q)=aQ+C
4、0。(2)平均成本函数。用C=C(Q)=表示每单位的平均成本函数。3、价格函数、收入函数和利润函数(1)价格函数。在厂商理论中,强调的是既定需求下的价格。在这种情况下,价格是需求量的函数,表示为P=P(Q)。要注意的是需求函数Q=f(P)与价格函数P=P(Q)是互为反函数的关系。(2)收入函数。在商业活动中,一定时期内的收益,就是指商品售出后的收入,记为R。因此,收入函数为R=R(Q)=PQ。其中Q表示销售量,P表示价格。(3)利润函数。利润是指收入扣除成本后的剩余部分,记为L。则L=L(Q)=R(Q)-C(Q)。其中Q表示产品的的数量,R(Q)表示收入,C(Q)表示成本。三、导数的经济
5、学意义及其在经济分析中的应用1、边际分析边际概念是经济学中的一个重要概念,通常指经济变量的变化率。利用导数研究经济变量的边际变化的方法,即边际分析方法,是经济理论中的一个重要分析方法。一般地,设函数y=f(x)可导,则导数f’(x)叫做边际函数。成本函数C=C(Q)的导数C’(Q)叫做边际成本,其经济意义为当产量为Q时再生产一个单位的产品所增加的总成本;收入函数R=R(Q)的导数R’(Q)叫做边际收入,其经济意义为当销售量为Q时再多销售一个单位产品所增加的销售总收入;利润函数L=L(Q)的导数L’(Q)叫做边际利润,其经济意义近似等于产量(或销售量)为Q时再多生产(或多销售)一个单位产品
6、所增加(或减少)的利润。例如:某企业每月生产的总成本C(千元)是产量Q(吨)的函数C(Q)=Q2-10Q+20。如果每吨产品销售价格2万元,求每月生产8吨、10吨、15吨、20吨时的边际利润。解:因为利润函数为:L(Q)=R(Q)-C(Q)=20Q-(Q2-10Q+20)=-Q2+30Q-20。所以边际利润为L’(Q)=(-Q2+30Q-20)’=-2Q+30。于是L’(8)=-2×8+30=14(千元/吨),L’(10)=-2×10+30=10(千元/吨),L’(15)=-2×15+30=0(千元/吨),L’(20)=-2×20+30=-10(千元/吨)。以上结果表明:当月产量为8吨时
7、,再生产1吨,利润将增加14000元;当月产量为10吨时,再生产1吨,则利润将增加1万元;当月产量为15吨时,再生产1吨,利润则不会增加;当月产量为20吨时,再生产1吨,利润反而减少1万元。实际上,该题的边际利润函数L’(Q)=-2Q+30在Q>15时小于0,所以利润函数是单调减少的,随着产量的增加,利润将减少。显然,该企业不能完全依靠增加产量来提高利润,搞得不好,还会造成生产越多,亏损越大的局面。那么保持怎样的产量才能使该企业获得