2019高考数学复习第八章立体几何8.4直线、平面平行的判定与性质练习理

2019高考数学复习第八章立体几何8.4直线、平面平行的判定与性质练习理

ID:35760469

大小:929.48 KB

页数:18页

时间:2019-04-16

2019高考数学复习第八章立体几何8.4直线、平面平行的判定与性质练习理_第1页
2019高考数学复习第八章立体几何8.4直线、平面平行的判定与性质练习理_第2页
2019高考数学复习第八章立体几何8.4直线、平面平行的判定与性质练习理_第3页
2019高考数学复习第八章立体几何8.4直线、平面平行的判定与性质练习理_第4页
2019高考数学复习第八章立体几何8.4直线、平面平行的判定与性质练习理_第5页
资源描述:

《2019高考数学复习第八章立体几何8.4直线、平面平行的判定与性质练习理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§8.4 直线、平面平行的判定与性质考纲解读考点内容解读要求高考示例常考题型预测热度1.直线与平面平行的判定与性质①以立体几何中的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,理解以下判定定理.如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.理解以下性质定理,并能够证明.如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.如果两个平行平面同时和第三个平面

2、相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行.②能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题掌握2017江苏,15;2016江苏,16;2016四川,18;2015安徽,5;2015江苏,16;2013广东,6选择题解答题★★★2.平面与平面平行的判定与性质掌握2016课标全国Ⅱ,14;2013江苏,16选择题解答题★★☆分析解读 1.理解空间直线和平面位置关系的定义;了解直线和平面的位置关系;掌握直线与平面平行的判定定理和性质定理.2.会运用直线与平面及平

3、面与平面的位置关系,以及它们平行的判定定理和性质定理解决简单的应用问题与证明问题.3.推理和证明要严谨、合理、充分.4.高考对本节内容的考查,一般通过对图形或几何体的认识,考查线线平行、线面平行、面面平行之间的转化思想,题型以解答题为主,分值约为5分,属中档题.五年高考考点一 直线与平面平行的判定与性质1.(2015安徽,5,5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是(  )                  A.若α,β垂直于同一平面,则α与β平行B.若m,n平行

4、于同一平面,则m与n平行C.若α,β,则在α内与β平行的直线D.若m,n,则m与n垂直于同一平面答案 D2.(2017江苏,15,14分)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.证明 (1)在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面

5、ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.3.(2016江苏,16,14分)如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明 (1)在直三棱

6、柱ABC-A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以

7、A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.4.(2016四川,18,12分)如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD,E为棱AD的中点,异面直线PA与CD所成的角为90°.(1)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;(2)若二面角P-CD-A的大小为45°,求直线P

8、A与平面PCE所成角的正弦值.解析 (1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED.所以四边形BCDE是平行四边形.从而CM∥EB.又EB⊂平面PBE,CM⊄平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(2)解法一:由已知,CD⊥PA,CD⊥AD,PA∩AD=A,所以CD⊥平面PAD.从而CD⊥PD.所以∠PDA是二面角P-C

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。