欢迎来到天天文库
浏览记录
ID:35737566
大小:104.41 KB
页数:4页
时间:2019-04-15
《2019高考数学 函数的概念与基本初等函数第10讲变化率与导数导数的运算分层演练文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第10讲变化率与导数、导数的运算一、选择题1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )x1.992345.156.126y1.5174.04187.51218.01A.y=2x-2B.y=(x2-1)C.y=log2xD.y=logx解析:选B.由题中表可知函数在(0,+∞)上是增函数,且y的变化随x的增大而增大得越来越快,分析选项可知B符合,故选B.2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图
2、象正确的是( )解析:选A.前3年年产量的增长速度越来越快,说明呈高速增长,只有A、C图象符合要求,而后3年年产量保持不变,故选A.3.一种放射性元素的质量按每年10%衰减,这种放射性元素的半衰期(剩余质量为最初质量的一半所需的时间叫作半衰期)是(精确到0.1,已知lg2=0.3010,lg3=0.4771)( )A.5.2B.6.6C.7.1D.8.3解析:选B.设这种放射性元素的半衰期是x年,则(1-10%)x=,化简得0.9x=,即x=log0.9===≈6.6(年).故选B.4.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10m3的,按每立方米m元收费;用水超
3、过10m3的,超过部分加倍收费.某职工某月缴水费16m元,则该职工这个月实际用水为( )A.13m3B.14m3C.18m3D.26m3解析:选A.设该职工用水xm3时,缴纳的水费为y元,由题意得y=则10m+(x-10)·2m=16m,解得x=13.5.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为( )A.x=15,y=12B.x=12,y=15C.x=14,y=10D.x=10,y=14解析:选A.由三角形相似得=.得x=(24-y),所以S=xy=-(y-12)2
4、+180,所以当y=12时,S有最大值,此时x=15.检验符合题意.6.某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,可以生产最低档次产品60件,每提高一个档次将少生产3件产品,则每天获得利润最大时生产产品的档次是( )A.7B.8C.9D.10解析:选C.由题意,当生产第k档次的产品时,每天可获利润为y=[8+2(k-1)][60-3(k-1)]=-6k2+108k+378(1≤k≤10,k∈N*),配方可得y=-6(k-9)2+864,所以当k=9时,获得利润最大.选C.二、填空题7.某辆汽车每次加油都把油箱加满,下表记录了该车
5、相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2016年5月1日12350002016年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为________升.解析:因为每次都把油箱加满,第二次加了48升油,说明这段时间总耗油量为48升,而行驶的路程为35600-35000=600(千米),故每100千米平均耗油量为48÷6=8(升).答案:88.某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分
6、按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km.解析:设出租车行驶xkm时,付费y元,则y=由y=22.6,解得x=9.答案:99.里氏震级M的计算公式为:M=lgA-lgA0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.则8级地震的最大振幅是5级地震最大振幅的________倍.解析:设8级地震的最大振幅和5级地震的最大振幅分别为A1,A2,则8=lgA1-lgA0=lg,则=108,5=lgA2-lgA0=lg,则=105,所以=103.即8级地震的最大振幅是5级地震最大振幅的100
7、0倍.答案:100010.某汽车销售公司在A、B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是________万元.解析:设公司在A地销售该品牌的汽车x辆,则在B地销售该品牌的汽车(16-x)辆,所以可得利润y=4.1x-0.1x2+2(
此文档下载收益归作者所有