2017中考数学复习第三单元函数及其图象第14课时二次函数教案

ID:35725807

大小:276.52 KB

页数:5页

时间:2019-04-14

2017中考数学复习第三单元函数及其图象第14课时二次函数教案_第1页
2017中考数学复习第三单元函数及其图象第14课时二次函数教案_第2页
2017中考数学复习第三单元函数及其图象第14课时二次函数教案_第3页
2017中考数学复习第三单元函数及其图象第14课时二次函数教案_第4页
2017中考数学复习第三单元函数及其图象第14课时二次函数教案_第5页
资源描述:

《2017中考数学复习第三单元函数及其图象第14课时二次函数教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第三单元函数及其图像第14课时二次函数教学目标【考试目标】1.了解二次函数的意义,根据已知条件确定二次函数的表达式,会用待定系数法求函数表达式.2.会画二次函数的图象,根据二次函数的图象和解析表达式理解其性质,会用配方法确定二次函数图象的顶点、开口方向和对称轴.3.会利用二次函数的图象求一元二次方程的近似解.【教学重点】1.了解二次函数的概念,以及二次函数解析式的三种形式.2.掌握二次函数的图象与性质.3.掌握用待定系数法求二次函数的解析式.4.掌握二次函数系数与图象的关系.5.掌握二次函数图象的平移,了解二次函数图象的对称,旋转.6.掌握二次函数与一元二次方程的关系

2、.教学过程一、体系图引入,引发思考二、引入真题,深化理解【例1】(2016年贺州)抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数在同一平面直角坐标系内的图象大致为(B)【解析】根据二次函数图象的性质可以看出a>0,b<0,c<0.所以一次函数y=ax+b图象经过一、三、四象限,反比例函数经过二、四象限.只有B选项符合题意,故选择B选项.【考点】此题考查了二次函数图象,反比例函数图象与一次函数图象的关系,先根据二次图象的性质判断出各个系数的符号,再利用一次函数图象、反比例函数图象的性质筛选出满足题意的选项.【例2】(2016年达州)如图,已

3、知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1,下列结论:(D)①abc>0②4a+2b+c>0③4ac-b2<8a④⑤b>cA.①③B.①③④C.②④⑤D.①③④⑤【解析】①中,∵函数图象开口向上,∴a>0,对称轴在y轴右侧,故ab异号,抛物线与y轴交点在y轴负半轴,∴c<0.∴abc>0,故①正确.②中,∵二次函数图象与x轴的一个交点为A(-1,0)函数图象对称轴为x=1,∴该二次函数图象与x轴的另一个交点为(3,0),由题可知当-1<x<3时,y<0,故

4、当x=2时,y=4a+2b+c<0,故②错误.③中,∵图象与x轴有两个交点,∴b2-4ac>0,故4ac-b2<0,又因为a>0,∴8a>0,∴4ac-b2<8a,故③正确.④中,∵函数图象与x轴的一个交点为(-1,0),∴当x=-1时,a-b+c=0,c=b-a.又因为对称轴为x=1,则即b=-2a,∴c=-3a.又∵函数图象与y轴交点在(0,-2)(0,-1)之间,∴-2<c<-1,即-2<-3a<-1,∴.故④正确.⑤中,∵a>0,∴b-c>0(a=b-c),即b>c.故⑤也正确.故选择D选项.【考点】考查了二次函数系数与图象间的关系,熟练掌握二次函数图象的性质

5、对理解二次函数系数与图象之间的关系有很大的帮助.【例3】(2016年山西)将抛物线y=x2-4x-4向左平移三个单位,再向上平移五个单位,得到抛物线的表达式为(D)A.y=(x+1)2-13B.y=(x-5)2-3C.y=(x-5)2-13D.y=(x+1)2-3【解析】二次函数图象平移,先将解析式变为顶点式比较方便,题中二次函数变为顶点式为:y=(x-2)2-8.根据平移的规律左加右减,上加下减可以得到平移后的二次函数的解析式为D选项,故选择D选项.【考点】本题考查了二次函数图象的平移,熟记二次函数图象的平移方法,此题不难解决.【例4】(2016年江西)设抛物线的解

6、析式为y=ax2过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2()作x轴的垂线,交抛物线于点A2,······,过点Bn()(n为正整数)作x轴的垂线,交抛物线于点An,连接AnBn+1,得直角三角形AnBnBn+1.(1)求a的值;(2)直接写出线段AnBn,BnBn+1的长(用含n的式子表示);(3)在系列Rt△AnBnBn+1中,探究下列问题:①当n为何值时,Rt△AnBnBn+1是等腰直角三角形?②设1≤k<m≤n(k,m均为正整数),问是否存在Rt△AkBkBk+1与Rt△AmBmBm+1相似?若存在,求出其相似比;若不存在,说明理由.

7、【解析】(1)把A(1,2)代入y=ax2得:2=a×1,∴a=2.(2)AnBn=BnBn+1=(3)①若Rt△AnBnBn+1是等腰直角三角形,则AnBn=BnBn+1.,∴n=3.②若Rt△AkBkBk+1与Rt△AmBmBm+1相似,则且m,k都是正整数,∴或.代入得相似比为8:1或64:1.【考点】此题考查了二次函数解析式的求法,以及二次函数与寻找规律以及三角形结合起来考查.【例5】(2016年安徽)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次图像上A,B两点之间的一个动点,横

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《2017中考数学复习第三单元函数及其图象第14课时二次函数教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第三单元函数及其图像第14课时二次函数教学目标【考试目标】1.了解二次函数的意义,根据已知条件确定二次函数的表达式,会用待定系数法求函数表达式.2.会画二次函数的图象,根据二次函数的图象和解析表达式理解其性质,会用配方法确定二次函数图象的顶点、开口方向和对称轴.3.会利用二次函数的图象求一元二次方程的近似解.【教学重点】1.了解二次函数的概念,以及二次函数解析式的三种形式.2.掌握二次函数的图象与性质.3.掌握用待定系数法求二次函数的解析式.4.掌握二次函数系数与图象的关系.5.掌握二次函数图象的平移,了解二次函数图象的对称,旋转.6.掌握二次函数与一元二次方程的关系

2、.教学过程一、体系图引入,引发思考二、引入真题,深化理解【例1】(2016年贺州)抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数在同一平面直角坐标系内的图象大致为(B)【解析】根据二次函数图象的性质可以看出a>0,b<0,c<0.所以一次函数y=ax+b图象经过一、三、四象限,反比例函数经过二、四象限.只有B选项符合题意,故选择B选项.【考点】此题考查了二次函数图象,反比例函数图象与一次函数图象的关系,先根据二次图象的性质判断出各个系数的符号,再利用一次函数图象、反比例函数图象的性质筛选出满足题意的选项.【例2】(2016年达州)如图,已

3、知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1,下列结论:(D)①abc>0②4a+2b+c>0③4ac-b2<8a④⑤b>cA.①③B.①③④C.②④⑤D.①③④⑤【解析】①中,∵函数图象开口向上,∴a>0,对称轴在y轴右侧,故ab异号,抛物线与y轴交点在y轴负半轴,∴c<0.∴abc>0,故①正确.②中,∵二次函数图象与x轴的一个交点为A(-1,0)函数图象对称轴为x=1,∴该二次函数图象与x轴的另一个交点为(3,0),由题可知当-1<x<3时,y<0,故

4、当x=2时,y=4a+2b+c<0,故②错误.③中,∵图象与x轴有两个交点,∴b2-4ac>0,故4ac-b2<0,又因为a>0,∴8a>0,∴4ac-b2<8a,故③正确.④中,∵函数图象与x轴的一个交点为(-1,0),∴当x=-1时,a-b+c=0,c=b-a.又因为对称轴为x=1,则即b=-2a,∴c=-3a.又∵函数图象与y轴交点在(0,-2)(0,-1)之间,∴-2<c<-1,即-2<-3a<-1,∴.故④正确.⑤中,∵a>0,∴b-c>0(a=b-c),即b>c.故⑤也正确.故选择D选项.【考点】考查了二次函数系数与图象间的关系,熟练掌握二次函数图象的性质

5、对理解二次函数系数与图象之间的关系有很大的帮助.【例3】(2016年山西)将抛物线y=x2-4x-4向左平移三个单位,再向上平移五个单位,得到抛物线的表达式为(D)A.y=(x+1)2-13B.y=(x-5)2-3C.y=(x-5)2-13D.y=(x+1)2-3【解析】二次函数图象平移,先将解析式变为顶点式比较方便,题中二次函数变为顶点式为:y=(x-2)2-8.根据平移的规律左加右减,上加下减可以得到平移后的二次函数的解析式为D选项,故选择D选项.【考点】本题考查了二次函数图象的平移,熟记二次函数图象的平移方法,此题不难解决.【例4】(2016年江西)设抛物线的解

6、析式为y=ax2过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2()作x轴的垂线,交抛物线于点A2,······,过点Bn()(n为正整数)作x轴的垂线,交抛物线于点An,连接AnBn+1,得直角三角形AnBnBn+1.(1)求a的值;(2)直接写出线段AnBn,BnBn+1的长(用含n的式子表示);(3)在系列Rt△AnBnBn+1中,探究下列问题:①当n为何值时,Rt△AnBnBn+1是等腰直角三角形?②设1≤k<m≤n(k,m均为正整数),问是否存在Rt△AkBkBk+1与Rt△AmBmBm+1相似?若存在,求出其相似比;若不存在,说明理由.

7、【解析】(1)把A(1,2)代入y=ax2得:2=a×1,∴a=2.(2)AnBn=BnBn+1=(3)①若Rt△AnBnBn+1是等腰直角三角形,则AnBn=BnBn+1.,∴n=3.②若Rt△AkBkBk+1与Rt△AmBmBm+1相似,则且m,k都是正整数,∴或.代入得相似比为8:1或64:1.【考点】此题考查了二次函数解析式的求法,以及二次函数与寻找规律以及三角形结合起来考查.【例5】(2016年安徽)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次图像上A,B两点之间的一个动点,横

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭