欢迎来到天天文库
浏览记录
ID:35673740
大小:40.50 KB
页数:5页
时间:2019-04-10
《初中数学教学论文 “反思“让学习更有效》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、“反思“让学习更有效-----由一道中考题说起作为数学教师,经常要面对这样的疑惑:有的学生学习很努力可数学成绩为何上不去啊?一道中考试题带给我新的教学启示:善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好。某一天小迪有20分钟时间可用于学习。假设小迪用于解题的时间x(单位:分钟)与学习收益量y的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间。(1)求小迪解题的学
2、习收益量y与用于解题的时间之间的函数关系式;(2)求小迪回顾反思的学习收益量y与用于回顾反思的时间的函数关系式; (3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大? 本题是一道函数应用题,就题目解题思路与方法而言,并没有特别之处,但题目所蕴涵的现实意义却留给我很多的思考:解题的效益与时间成正比,但是对于解题后的反思在短时间内产生的效益却远远超过前者。这就让我联想到,如果我们每天在解题之余,引导学生用三至四分钟的时间进行反思,那效果不就很好?如果再将这种意识运
3、用到整个数学学习中,从而形成自己的反思性学习方法,那……《数学课程标准》中提出:通过义务教育阶段的学习,学生能“初步形成反思意识”,“形成实事求是的态度以及进行质疑和独立思考的习惯”。我国最早的教育著作《学记》中说:“学然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自强也。”反思是指人们对于自身的行为、思想等进行思考的过程,是一种对认识活动的再认知。而反思性学习是指对学习过程始终持有一种“健康”的怀疑,能在已有的认知基础上,主动向更深层次知识领域的拓展。波利亚说得好:“当你找到第一个
4、蘑菇后,要环顾四周,因为它们总是成堆生长的”,这正是反思的奥妙所在。在数学学习中,我们要善于在发现第一个蘑菇后,利用“环顾四周”的最好途径——学会反思。反思能更好地衔接知识,为以后的学习铺平道路,也能对数学能力的培养起到引领作用。初中是培养学生反思能力的最佳期,这一阶段的学生在心理方面已经具备了自我反思的基础与能力,但还需要老师和家长在具体的反思策略与方法上加以指导与帮助.由于数学对象的抽象性、数学活动的探索性、数学推理的严谨性和数学语言的特殊性,决定了正处于思维发展阶段的初中生不可能一次直接把
5、握数学活动的本质,必须要经过多次的反复思考、深入研究、自我调整,即坚持反思性数学学习,才可能洞察数学活动的本质特征,提高学习效率和学习能力。 一、预设反思环节,渗透知识形成的揭示我们的教学对象是学生,因此我们的教学设计应该是最大化地促进学生的主体反思。要培养学生的主体反思意识,教师首先要有引导学生反思的意识,要对教材勇于反思,并结合实践敢于不断优化地改进。教师要在各个教学板块预设合适的“反思”环节。如导入时,可创设有效情境,激发学生反思新知与旧知的联系,回顾旧知学习过程中积累的经验;新授时,可
6、以设计诸如“你是怎么做的?你为什么这样做?这样做有何优点?还有其他的解法吗?可以谈谈你的思考过程”、“哪种方法更简便”、“是什么原因导致了错误”等问题引导学生反思,促进学生更加深入地思考;练习时,可以就知识的重点难点,容易混淆之处,安排判断、纠错、辨析等反思性操练,对于错题进行纠错性反思;小结时,可以提供足够的时间与空间,让学生对所学内容、学习过程、运用的数学思想方法进行回顾和思考;作业设计时,可以适度拓展学习内容,以强化学生反思。案例1:对于三角形全等判定中的“角边角”定理(ASA),浙教版七
7、年级(下)第24页。教材的安排是先合作学习,给出“有两个角和它们的夹边对应相等的两个三角形一定全等吗?”然后请学生用量角器和刻度尺画△ABC,使BC=3cm,∠B=40°,∠C=60°,将自己所画的三角形与其他同学画的三角形比较,你发现了什么?之后就给出了“一般地,我们有如下结论:有两个角和这两个角的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”)。教材的这种设计本意是,让学生动手操作,在比一比,拼一拼的实践中,自主探究“ASA”定理。但是在真正的教学中,这样的操作和探究是难以实现的
8、,毕竟具体的实践操作还是有很大的误差,这对学生的自主探究会产生一定的影响。于是有的老师仍然按照教材的安排教,有的老师甚至可能干脆放弃合作探究环节,直接得出结论就算。关于“角边角”定理的探究教学设计,我有幸拜读了《对湘教版教材中“ASA”判定教学的商榷》一文,给了我很大的启发,该教师借助一些简易教学器具的制作和使用,对定理的探究起到很好的辅助作用。他在教学中,利用复合投影片,设计出两角确定不变的可变三角形。如图,∠CAB确定,∠CBA确定,拉动复合片,可使∠CBA发生平移,从而改变△ABC的大小。
此文档下载收益归作者所有