欢迎来到天天文库
浏览记录
ID:35672360
大小:146.73 KB
页数:19页
时间:2019-04-10
《傅里叶变换和拉普拉斯变换的性质和应用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、word专业整理1.前言1.1背景利用变换可简化运算,比如对数变换,极坐标变换等。类似的,变换也存在于工程,技术领域,它就是积分变换。积分变换的使用,可以使求解微分方程的过程得到简化,比如乘积可以转化为卷积。什么是积分变换呢?即为利用含参变量积分,把一个属于A函数类的函数转化属于B函数类的一个函数。傅里叶变换和拉普拉斯变换是两种重要积分变换。傅里叶变换能够分析信号的成分,可以当做信号的成分的波形有很多,例如锯傅立叶变换是利用正弦波来作为信号的成分。(拉普拉斯)(1749-1827)在他的与概率论相关科学研究中引入,在他的一些基本的关于拉普拉斯变换的结果写在
2、他的著名作品《概率分析理论》之中。即使在19世纪初,拉普拉斯变换已经发现,但是关于拉普拉斯变换的相关研究却一直没什么太大进展,直至一个英国数学家,物理学家,同时也是一位电气工程师的OliverHeaviside奥利弗·亥维赛(1850-1925)在电学相关问题之中引入了算子运算,而且得到了不少方法与结果,对于解决现实问题很有好处,这才引起了数学家对算子理论的严格化的兴趣。之后才创立了现代算子理论。算子理论最初的理论依据就是拉普拉斯变换的相关理论,拉普拉斯变换相关理论的继续发展也是得益于算理理论的更进一步发展。这篇文章就是针对傅里叶变换和拉普拉斯变换的相关定
3、义,相关性质,以及相关应用做一下简要讨论,并且分析傅里叶变换和拉普拉斯变换的区别与联系。1.2预备知识定理1.2.1(傅里叶积分定理)若在(-∞,+∞)上,函数ft满足一下条件:(1)在任意一个有限闭区间上面ft满足狄利克雷条件;学习资料整理分享word专业整理(2)-∞+∞ftdt<+∞,即ft在(-∞,+∞)上绝对可积;则ft的傅里叶积分公式收敛,在它的连续点t处12π-∞+∞-∞+∞f(τ)e-iωτdτeiωτdω=ft在它的间断点t处12π-∞+∞-∞+∞f(τ)e-iωτdτeiωτdω=ft+0+ft-02定义1.2.1(傅里叶变换)设函数f
4、t满足定理1.2.1中的条件,则称-∞+∞e-iωtftdt为ft的傅里叶变换,记作Fω=-∞+∞e-iωtftdt。定义1.2.2(傅里叶级数)设函数ft的周期为T,则它的傅里叶级数为:fTt=a02+n=1+∞(ancosωt+bnsinωt)上式中,ω=2πTa0=-T2T2fTtdtan=2T+-T2T2fTtcosnωtdt(n=1,2,3,⋯)bn=2T+-T2T2fTtsinnωtdt(n=1,2,3,⋯)定义1.2.3(傅里叶逆变换)ft=12π-∞+∞e-iωtFωdω定义1.2.4(拉普拉斯变换)若函数ft满足0+∞e-stf(t)dt
5、积分收敛,那么该积分记作Ls=Lft=0+∞e-stftdt式中s为复数,e-st为积分核,上式称为拉普拉斯变换.学习资料整理分享word专业整理定义1.2.5(拉普拉斯逆变换)ft称为F(s)的拉普拉斯逆变换ft=L-1ft定义1.2.6(卷积)假如ƒ1(t)和ƒ2(t)是(-∞,+∞)上面有定义的函数,则-∞+∞ƒ1(τ)ƒ2(t-τ)dτ称为ƒ1(t)和ƒ2(t)的卷积,记为ƒ1(t)*ƒ2(t)ƒ1(t)*ƒ2(t)=-∞+∞ƒ1(τ)ƒ2(t-τ)dτ2.傅里叶变换的性质及应用2.1傅里叶变换的性质性质2.1.1(线性性质)设α,β为常数,F1ω
6、=F[ƒ1(t)],F2ω=F[ƒ2(t)]则:FαF1t+βF2t=αF1ω+βF2(ω)F-1αF1ω+βF2ω=αF1t+βF2(t)性质2.1.2(位移性质)设F[ft]=F(ω),则F[f(t±t0)]=e±jωt0F[f(t)]F-1[f(ω∓ω0)]=e±jω0tF[f(t)]性质2.1.3(微分性质)设F(ω)=F[ft],ft在(﹣∞,﹢∞)连续或可去间断点仅有有限个,且lim
7、t
8、→+∞f(t)=0,则:F[f't]=iωFω。F[fnt]=iωnFω。证明由傅里叶变换的定义有学习资料整理分享word专业整理Ff't=-∞+∞f'te-
9、iωtdt=-∞+∞e-iωtdf(t)=fte-iωt
10、+∞-∞+iω-∞+∞f(t)e-iωtdt=iωFω性质2.1.4(积分性质)设Fft=F(ω),若,limt→+∞-∞tf(t)dt=0则:F-∞tf(t)dt=F(ω)iω证明因为-∞tf(t)dt'=ft,故由微分性质得Fω=jωF-∞tftdt,即F-∞tf(t)dt=F(ω)iω定理2.1.1(卷积定理)如果F1ω=Ff1t,F2ω=Ff2t,则有:Ff1t*f2t=F1(ω)F2(ω)F-1F1ω*F2(ω)=2πf1tf2t证明学习资料整理分享word专业整理Ff1t*f2t=-∞+
11、∞f1t*f2te-iωtdt=-∞+∞-∞+∞f1τf2t-τd
此文档下载收益归作者所有