欢迎来到天天文库
浏览记录
ID:35664026
大小:953.98 KB
页数:19页
时间:2019-04-08
《吉林省“五地六校”合作体高二上学期期末考试理科数学---精校解析Word版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、www.ks5u.com吉林省五地六校高二年级(上)期末数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知命题p:,,则是 A.,B.,C.,D.,【答案】B【解析】【分析】利用特称命题的否定是全称命题,写出结果即可.【详解】因为特称命题的否定是全称命题,所以命题p:,,则是:,.故选:B.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基本知识的考查.2.若直线过点,,则此直线的倾斜角是 A.B.C.D.【答案】C【解析】【分析】求出直线的斜率,从而求出直线的倾斜角即可.【详解】由题意得:直线的斜率,故倾斜角是,故选:C.【点睛】本题考查了直线斜率
2、,倾斜角问题,考查转化思想,是一道基础题.3.某几何体的三视图如图所示,则该几何体的体积为()-19-A.B.C.D.【答案】B【解析】试题分析:由三视图易知该几何体为一个圆柱和半个圆锥组合而成,故其体积为考点:三视图,空间几何体体积【此处有视频,请去附件查看】4.已知命题p:,使得,命题q:,使得,则下列命题是真命题的是 A.B.C.D.【答案】D【解析】【分析】由配方法得:,即命题p为真命题,,即命题q为假命题,得解.【详解】由,,即命题p为真命题,由,即无解,即命题q为假命题,故选:D.【点睛】本题考查了二次不等式及二次方程的问题及命题的真假,属简单题.-19-5.“”是“方
3、程表示椭圆”的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【分析】由椭圆的性质得:,解得m范围,又“”范围小,“或”范围大,根据小范围推大范围,故得解。【详解】“方程表示椭圆”,解得:或,又“”是“或”的充分不必要条件,即“”是“方程表示椭圆”的充分不必要条件,故选:A.【点睛】本题考查了椭圆的性质、充分条件,必要条件,充要条件,属简单题6.方程表示的曲线是 A.一个圆B.两个半圆C.两个圆D.半圆【答案】D【解析】【分析】方程等价于,即可得出结论.【详解】方程等价于,表示的曲线是半个圆.故选:D.【点睛】本题考查曲线与方程,考查圆
4、的知识,属于基础题.7.以为圆心,4为半径的圆的方程为 A.B.C.D.-19-【答案】C【解析】【分析】利用圆的标准方程的性质求解.【详解】以为圆心,4为半径的圆的方程为:.故选:C.【点睛】本题考查圆的标准方程的求法,是基础题,解题时要认真审题,注意圆的性质的合理运用.8.用a,b,c表示空间中三条不同的直线,表示平面,给出下列命题:若,,则; 若,,则;若,,则; 若,,则.其中真命题的序号是 A.B.C.D.【答案】D【解析】【分析】与立体几何有关的命题真假判断,要多结合空间图形,充分利用相关的公理、定理解答判断线与线、线与面、面与面之间的关系,可将线线、线面、面面
5、平行垂直的性质互相转换,进行证明,也可将题目的中直线放在空间正方体内进行分析.【详解】因为空间中,用a,b,c表示三条不同的直线,中正方体从同一点出发的三条线,满足已知但是,所以错误;若,,则,满足平行线公理,所以正确;平行于同一平面的两直线的位置关系可能是平行、相交或者异面,所以错误;垂直于同一平面的两直线平行,由线面垂直的性质定理判断正确;故选:D.【点睛】本题考查空间两条直线的位置关系以及判定方法,线面平行的判定,解决时要紧紧抓住空间两条直线的位置关系的三种情况,牢固掌握线面平行、垂直的判定及性质定理.-19-9.已知在三棱锥中,,,,,,且平面平面,那么三棱锥外接球的体积为(
6、)A.B.C.D.【答案】D【解析】试题分析:取中点,连接,由知,则,又平面平面,所以平面,设,则,又,则,,,,显然是其外接球球心,因此.故选D.考点:棱锥与外接球,体积.10.在平面内两个定点的距离为6,点M到这两个定点的距离的平方和为26,则点M的轨迹是 A.圆B.椭圆C.双曲线D.线段【答案】A【解析】【分析】以AB所在直线为x轴,AB的垂直平分线为y轴建立平面直角坐标系,设出动点M的坐标,由M到这两定点的距离的平方和为26列等式,整理后得答案.-19-【详解】设两定点分别为A,B,以AB所在直线为x轴,AB的垂直平分线为y轴建立直角坐标系如图:,则,,设,则,即.整理得:
7、.的轨迹方程是.故选:A.【点睛】本题考查了轨迹方程的求法,解答的关键是建立恰当的平面直角坐标系,是中档题.11.已知双曲线C:的左右焦点分别是,,过的直线l与C的左右两支分别交于A,B两点,且,则 A.B.3C.4D.【答案】C【解析】设双曲线的实半轴长为a,依题意可得a=1,由双曲线的定义可得
8、AF2
9、-
10、AF1
11、=2a=2,
12、BF1
13、-
14、BF2
15、=2a=2.又
16、AF1
17、=
18、BF1
19、,故
20、AF2
21、-
22、BF2
23、=4,又
24、AB
25、=
26、AF2
27、-
28、BF2
29、,
此文档下载收益归作者所有