3.3学案函数的实际应用举例2创新说课大赛教学设计

3.3学案函数的实际应用举例2创新说课大赛教学设计

ID:35608973

大小:3.18 MB

页数:3页

时间:2019-03-31

3.3学案函数的实际应用举例2创新说课大赛教学设计_第1页
3.3学案函数的实际应用举例2创新说课大赛教学设计_第2页
3.3学案函数的实际应用举例2创新说课大赛教学设计_第3页
资源描述:

《3.3学案函数的实际应用举例2创新说课大赛教学设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、3.3函数的实际应用举例(2)学案(班级: 姓名:  )知识点回顾二次函数的一般式:                 二次函数的顶点式:                 当a  0,x=   时,y有最大值,最大值是         当a  0,x=   时,y有最小值,最小值是         问题一:(如图)在建白鹿洲公园时,计划用长1000米的围栏,靠墙围建一个矩形绿化区。为了能使绿化区的面积尽可能大,如果你是园林设计人员,你会怎么设计?变式:用长为8米的铁丝围成一个矩形,问长、宽各为多少时,所求的矩形面积最大?最大值是多少?问题二:(如图)建白鹿洲公园

2、时,要在矩形地块ABCD上规划出一小块矩形PGCH建造一小花园,要求小花园PGCH的一边落在CD上,但不能越过“老门台”保护区△AEF的边EF,测得AE=AF=FD=100米,EB=160米。在用地紧张的当下,当然希望小花园的面积最大,你会怎样设计?课后作业1.(2011年高职考题)(如图所示)计划用12米长的塑钢材料构建一个窗框。求:(1)窗框面积y与窗框长度x之间的函数关系式;(2)窗框取多少时,能使窗框采光的面积最大;(3)窗框的最大采光面积。2.在解问题二时,如果是设PG的长为x,求:x取何值,y达到最大,并计算出最大值。(思考题:在此情况下,写出P点

3、在DF及EF上运动时,小花园PGCH面积y的解析式。)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。