欢迎来到天天文库
浏览记录
ID:35588035
大小:1.38 MB
页数:82页
时间:2019-03-30
《毕业设计(论文)-粒子群优化算法及其参数设置》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、2010届信息与计算科学专业毕业设计毕业论文题目粒子群算法及其参数设置专业信息与计算科学班级计算061学号学生xx指导教师2010年772010届信息与计算科学专业毕业设计粒子群优化算法及其参数设置专业:信息与计算科学学生:xx指导教师:徐小平摘要粒子群优化是一种新兴的基于群体智能的启发式全局搜索算法,粒子群优化算法通过粒子间的竞争和协作以实现在复杂搜索空间中寻找全局最优点。它具有易理解、易实现、全局搜索能力强等特点,倍受科学与工程领域的广泛关注,已经成为发展最快的智能优化算法之一。论文介绍了粒子群优化算法的基本原理,分析了其特点。论文中围绕粒子群优化算法的原理、特点、
2、参数设置与应用等方面进行全面综述,重点利用单因子方差分析方法,分析了粒群优化算法中的惯性权值,加速因子的设置对算法基本性能的影响,给出算法中的经验参数设置。最后对其未来的研究提出了一些建议及研究方向的展望。关键词:粒子群优化算法;参数;方差分析;最优解772010届信息与计算科学专业毕业设计ParticleswarmoptimizationalgorithmanditsparametersetSpeciality:InformationandComputingScienceStudent:RenKanAdvisor:XuXiaopingAbstractParticles
3、warmoptimizationisanemergingglobalbasedonswarmintelligenceheuristicsearchalgorithm,particleswarmoptimizationalgorithmcompetitionandcollaborationbetweenparticlestoachieveincomplexsearchspacetofindtheglobaloptimum.Ithaseasytounderstand,easytoachieve,thecharacteristicsofstrongglobalsearchab
4、ility,andhasneverwidefieldofscienceandengineeringconcern,hasbecomethefastestgrowingoneoftheintelligentoptimizationalgorithms.Thispaperintroducestheparticleswarmoptimizationbasicprinciples,andanalyzesitsfeatures.Paperaroundtheparticleswarmoptimizationprinciples,characteristics,parameterss
5、ettingsandapplicationstoconductathoroughreview,focusingonasinglefactoranalysisofvariance,analysisoftheparticleswarmoptimizationalgorithmintheinertiaweight,accelerationfactorsettingthebasicpropertiesofthealgorithmtheimpactoftheexperienceofthealgorithmgivenparametersetting.Finally,itsfutur
6、eresearchedandprospectsareproposed.Keyword:Particleswarmoptimization;Parameter;Varianceanalysis;Optimalsolution772010届信息与计算科学专业毕业设计目录摘要IIAbstractIII1.引言11.1研究背景和课题意义11.2参数的影响11.3应用领域21.4电子资源21.5主要工作22.基本粒子群算法32.1粒子群算法思想的起源32.2算法原理42.3基本粒子群算法流程52.4特点62.5带惯性权重的粒子群算法72.7粒子群算法的研究现状83.粒子群优化算法
7、的改进策略93.1粒子群初始化93.2邻域拓扑93.3混合策略124.参数设置144.1对参数的仿真研究144.2测试仿真函数154.3应用单因子方差分析参数对结果影响334.4对参数的理论分析345结论与展望39致谢43附录44772010届信息与计算科学专业毕业设计1.引言1.1研究背景和课题意义“人工生命”是来研究具有某些生命基本特征的人工系统。人工生命包括两方面的内容:1、研究如何利用计算技术研究生物现象。2、研究如何利用生物技术研究计算问题。现在已经有很多源于生物现象的计算技巧。例如,人工神经网络是简化的大脑模型。遗传算法是模拟
此文档下载收益归作者所有