资源描述:
《粒子群优化算法及其参数设置(程序部分)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、附录程序1当,,。a)%主函数源程序(main.m)%------基本粒子群算法(particleswarmoptimization)%------名称:基本粒子群算法%------初始格式化clearall;%清除所有变量clc;%清屏formatlong;%将数据显示为长整形科学计数%------给定初始条条件------------------N=40;%³初始化群体个数D=10;%初始化群体维数T=100;%初始化群体最迭代次数c11=2;%学习因子1c21=2;%学习因子2c12=1.5;c22=1
2、.5;w=1.2;%惯性权重eps=10^(-6);%设置精度(在已知最小值的时候用)%------初始化种群个体(限定位置和速度)------------x=zeros(N,D);v=zeros(N,D);%zeros(m,n)产生m×n的全0矩阵fori=1:Nforj=1:Dx(i,j)=randn;%随机初始化位置v(i,j)=randn;%随机初始化速度endend%------显示群位置----------------------figure(1)forj=1:Dif(rem(D,2)>0)sub
3、plot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');gridonxlabel('粒子')ylabel('初始位置')tInfo=strcat('第',char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维');endtitle(tInfo)end%------显示种群速度figure(2)forj=1:Dif(rem(D,2)>0)sub
4、plot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');gridonxlabel('粒子')ylabel('初始速度')tInfo=strcat('第,char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维);endtitle(tInfo)endfigure(3)%第一个图subplot(1,2,1)%------初始化种群个体(在此限定速度
5、和位置)------------x1=x;v1=v;%------初始化个体最优位置和最优值---p1=x1;pbest1=ones(N,1);fori=1:Npbest1(i)=fitness(x1(i,:),D);end%------初始化全局最优位置和最优值---------------g1=1000*ones(1,D);gbest1=1000;fori=1:Nif(pbest1(i)6、--浸入主循环,按照公式依次迭代直到满足精度或者迭代次数---fori=1:Tforj=1:Nif(fitness(x1(j,:),D)7、,:)+v1(j,:);endgb1(i)=gbest1;endplot(gb1)TempStr=sprintf('c1=%g,c2=%g',c11,c21);title(TempStr);xlabel('迭代次数');ylabel('适应度值');%第二个图subplot(1,2,2)%-----初始化种群个体(在此限定速度和位置)------------x2=x;v2=v;%-----初始化种群个体最有位置和最优解-----------p2=x2;pbest2=ones(N,1);fori=1:Npbes
8、t2(i)=fitness(x2(i,:),D);end%-----初始化种全局最有位置和最优解------g2=1000*ones(1,D);gbest2=1000;fori=1:Nif(pbest2(i)