资源描述:
《数学与应用数学毕业论文--数学教学中的德育参透》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、学校名称:*********************************************************数学与应用数学专业毕业论文《数学教学中的德育渗透》姓名:学校:学号:指导教师:定稿日期:目录摘要(1)引言(1)一、数学中蕴含的德育内容(1)(一)理想教育(1)(二)利用数学史对学生进行爱国主义教育(2)(三)结合数学实际对学生进行辩证唯物主义教育(2)(四)对学生进行人生价值观的教育(3)(五)利用数学美对学生审美教育(3)二、实施德育渗透的要求(4)(一)贯彻素质教育原则(4)(二)
2、深入钻研教材,挖掘德育因素(4)(三)德育渗透要适时适度(4)三、德育渗透的原则(5)(一)科学性原则(5)(二)渗透性原则(5)(三)系统性原则(5)(四)量力性原则(5)(五)情感性原则(6)(六)持之以恒原则(6)(七)与时俱进原则(6)四、德育渗透的基本方法(6)(一)同向渗透(6)(二)阶段渗透(6)(三)哲理渗透(7)(四)自我渗透(7)五、实施中应重视的两个问题(7)(一)寓德育于数学教学中的关键是教师(7)(二)着眼课内,放眼课外(7)参考文献(8)数学教学中的德育渗透作者:**********
3、****指导教师:***************摘要:我们如何更好地结合学科特点在数学教学中进行德育教育?本文将从实施德育渗透的内容、要求、方法、原则及应注意的问题五个方面,阐述如何在数学教学中渗透德育教育.关键词:数学教学;德育;渗透引言数学教师的主要任务是传授数学知识,培养逻辑思维能力和运算能力.同时也要结合数学教学对学生进行有效的思想品德教育.新的课程标准把德育把德育教育放在十分重要的地位[1].这并不是让教师在数学课堂上进行说教,而是根据数学教育的特点,通过知识教育、思想渗透,提高人的审美意识,树立辩证
4、观点和形成科学的世界观、方法论等.所以,数学教师在完成教学任务的同时,结合教学内容,渗透德育教育,有着十分重要的现实意义,本文就数学教学中如何进行德育渗透进行探讨.一、数学中蕴含的德育内容(一)理想教育数学源于实际,且随着生产力的发展而发展.华罗庚说:“宇宙之大,粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁无处不用数学.”结合数学教学内容使学生了解数学知识在现代化建设和科技发展中的巨大作用,必将激发他们学好数学,以报效祖国的情感使学生了解科技的突飞猛进对数学工具的更高要求,而有待后人不断探索创新的
5、事实,必将增强学生的使命感,将现实和理想结合起来.发奋学习这样可为学生树立革命人生观打下坚实的基础.像陈景润,他攀登“哥德巴赫猜想”这一科学高峰的艰险历程中,为了理想,为了科学,以契而不舍,坚忍不拔的毅力,在不足十平方米的斗室中,埋头苦干,常常为了一个公式,一个数据而废寝忘食,终于在1972年把人们200多年未能解决的“哥德巴赫猜想”证明大大的向前推进了一步.这些名人的感人事迹无疑会让学生受到极大的感染,以此激励、教育学生像这些楷模学习,树立远大的理想[2].(二)利用数学史对学生进行爱国主义教育我国历史悠久,
6、有光辉灿烂的文化史、数学史.商高定理(勾股定理)、祖恒原理、杨辉三角、《周髀算经》,《九章算术》……是传统数学的宝贵财富.历史名人举世瞩目,仅公元前三世纪的刘徽一人就赢得了多项世界之最:他最早提出分数除法法则,给最小公倍数以严格定义、应用小数、提出非平方数的近似值公式,给出负数定义和负数加法法则,把比例和“三数法则”结合起来,给出一次方程定义和完整解法,提出割圆术、把圆周率计算到3.1416,用无穷分割证明了方锥的体积公式,创造“重差术”(即测量可望不可及目标的一种方法)现在虽时过境迁,但割圆术仍不失为极限这一
7、费解概念极好的几何解释.刘徽的辉煌成就不时的在教材、习题中闪光,结合于教学必将激发学生民族自尊心、自豪感和爱国热情.诚然,由于长期的封建统治、闭关锁国和帝国主义列强的侵略,近代我国数学曾一度萧条、落后,但新中国成立带来了科学的春天.著名数学家陈景润、华罗庚、苏步青、陈省身等,他们在各自领域都做出了突出贡献,在国际上享有极高的声誉.他们的辉煌业绩和爱国主义精神,是中华民族的骄傲.他们的足迹在数学教材中的再现,必将为后人敬仰,是生动的爱国主义教材.(三)结合数学实际对学生进行辩证唯物主义教育恩格斯指出:“数学是辨证
8、的辅助工具和表现形式,连初等数学也充满着矛盾.”数学是研究现实世界数量关系和空间形式的科学,客观世界遵循不以人的意志为转移的规律运动、变化、发展,故反映其数量关系和空间形式的数学处处充满着唯物论和辩证法.同时在漫长的数学知识发展的过程中,人们积累了一整套科学规律和处理问题的方法,这些数学思想方法是辩证唯物主义的立论基础和科学证明.如正负整数,正负分数对立统一于有理数,有理数无理数对立统