欢迎来到天天文库
浏览记录
ID:35565822
大小:283.00 KB
页数:9页
时间:2019-03-28
《培优专题 勾股定理及应用(含解答)-》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、实用标准文案培优专题勾股定理及应用勾股定理是数学史上一颗璀璨的明珠,在西方数学史上称之为“毕达哥拉斯定理”.数学家陈省身说过:“欧几里德几何的主要结论有两个,一个是三角形内角和定理,另一个就是勾股定理.”数学家华罗庚曾建议把它送入其他星球,作为地球人与其他星球人“交谈的语言,用于探索宇宙的奥秘”.勾股定理是我们研究和解决几何问题的重要理论依据之一,也是人们在生产实践和生活中广泛应用的基本原理,许多求线段长、角的大小;线段与线段,角与角,线段与角间的关系等问题,常常都用勾股定理或逆定理来解决.因此,勾股定理及应用是中考竞赛等考查的重要内容.例1已知一直角三角形的斜边长是2,周
2、长是2+,求这个三角形的面积.分析由斜边长是2,周长是2+,易知两直角边的和是,又由勾股定理可知两直角边的平方和为4,列关于两直角边的方程,只需求出两直角边长的积,即可求得三角形的面积.本题中用到数学解题中常用的“设而不求”的技巧,要熟练掌握.解:设直角三角形的两直角边为a、b,根据题意列方程得:①②即②式两边同时平方再减去①式得:2ab=2,∴ab=.∴S=.因此,这个三角形的面积为.练习11.已知:如图2-1,AD=4,CD=3,∠ADC=90°,AB=13,∠ACB=90°,求图形中阴影部分的面积.文档实用标准文案2-12.已知:长方形ABCD,AB∥CD,AD∥BC
3、,AB=2,AD≠DC,长方形ABCD的面积为S,沿长方形的对称轴折叠一次得到一个新长方形,求这个新长方形的对角线的长.3.若线段a、b、c能组成直角三角形,则它们的比值可以是()A.1:2:4B.1:3:5C.3:4:7D.5:12:13例2如图2-2,把一张长方形纸片ABCD折叠起来,使其对角顶点A、C重合,若其长BC为a,宽AB为b,则折叠后不重合部分的面积是多少?分析图形沿EF折叠后A、C重合,可知四边形AFED′与四边形CFED全等,则对应边、角相等,∴AF=FC,且FC=AE,则△ABF≌△AD′E,由三角形面积公式不难求出不重合部分的面积.解:∵图形沿EF折叠
4、后A、C重合,2-2∴四边形AFED′与CFED关于EF对称,则四边形AFED′≌四边形CFED.∴∠AFE=∠CFE.∴AF=FC,∠D′=∠D=∠B=90°AB=CD=AD′.∵AD∥BC,∴∠AEF=∠EFC.∴∠AEF=∠AFE.则AE=AF.∴Rt△ABF≌Rt△AD′E.在Rt△ABF中,∵∠B=90°,∴AB2+BF2=AF2.设BF=x,b2+x2=(a-x)2,∴x=.2-3∴S=2S△ABF=2×bx=2×·b·=.练习2文档实用标准文案1.如图2-3,把矩形ABCD沿直线BD向上折叠,使点C落在C′的位置上,已知AB=3,BC=7,重合部分△EBD的面
5、积为________.2.如图2-4,一架长2.5m的梯子,斜放在墙上,梯子的底部B离墙脚O的距离是0.7m,当梯子的顶部A向下滑0.4m到A′时,梯子的底部向外移动多少米?2-42-53.如图2-5,长方形ABCD中,AB=3,BC=4,若将该矩形折叠,使C点与A点重合,则折叠后痕迹EF的长为()A.3.74B.3.75C.3.76D.3.77例3试判断,三边长分别为2n2+2n,2n+1,2n2+2n+1(n为正整数)的三角形是否是直角三角形?分析先确定最大边,再利用勾股定理的判定定理判断是否为直角三角形.解:∵n为正整数,∴(2n2+2n+1)-(2n2+2n)=2n
6、2+2n+1-2n2-2n=1>0,(2n2+2n+1)-(2n+1)=2n2+2n+1-2n-1=2n2>0.∴2n2+2n+1为三角形中的最大边.又(2n2+2n+1)2=4n4+8n3+8n2+4n+1,(2n2+2n)2+(2n+1)2=4n4+8n3+8n2+4n+1.∴(2n2+2n+1)2=(2n2+2n)2+(2n+1)2.∴这个三角形是直角三角形.练习31.若△ABC的三边a、b、c满足a2+b2+c2+50=6a+8b+10c,则△ABC是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形2.如图2-6,在正方形ABCD中,F为DC的中点,E为
7、BC上一点,且EC=BC,猜想AF与EF的位置关系,并说明理由.文档实用标准文案2-63.△ABC中的三边分别是m2-1,2m,m2+1(m>1),那么()A.△ABC是直角三角形,且斜边长为m2+1.B.△ABC是直角三角形,且斜边长为2m.C.△ABC是直角三角形,但斜边长由m的大小而定.D.△ABC不是直角三角形.例4已知:如图2-7所示,△ABC中,D是AB的中点,若AC=12,BC=5,CD=6.5.求证:△ABC是直角三角形.分析欲证△ABC是直角三角形,在已知两边AC、BC的情况下求边AB的长,比较困
此文档下载收益归作者所有