群论在信号处理中的应用

群论在信号处理中的应用

ID:35549617

大小:346.50 KB

页数:10页

时间:2019-03-27

群论在信号处理中的应用_第1页
群论在信号处理中的应用_第2页
群论在信号处理中的应用_第3页
群论在信号处理中的应用_第4页
群论在信号处理中的应用_第5页
资源描述:

《群论在信号处理中的应用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、word文档整理分享群论在信号处理中的应用1引言1.1群论的历史与背景群论是法国传奇式人物埃瓦里斯特•伽罗瓦(EvaristeGalois,1811~1832)的发明。伽罗瓦是一位天才的数学家,但刚过20岁就不幸死于一场愚蠢的决斗。伽罗瓦在决斗的前一夜,还在匆匆完成他的伟大数学创造。他创建了群论,并用群论证明了代数方程能用根式求解的条件,证明了一般的五次和五次以上代数方程不能通过有限次加、减、乘、除和开方来精确求解。群在抽象代数中具有基本的重要地位:许多代数结构,包括环、域和模等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分

2、支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。1.2群的定义以及基本性质首先来简要说明一下群的定义[2]:设G是一个非空集合,*是它的一个代数运算,如果满足以下条件:Ⅰ.结合律成立,即对G中任意元素a,b,c都有(a*b)*c=a*(b*c);Ⅱ.G中有元素e,它对G中每个元素a都有e*a=a,叫做G的左单位元;G中有元素e,它对G中每个元素a都有a*e=a,叫做G的

3、右单位元;如果e既是左单位元又是右单位元,则e叫做G的单位元。Ⅲ.对G中每个元素a在G中都有元素a^(-1),叫做a的左逆元,使a^(-1)*a=e;则称G对代数运算*做成一个群。一般说来,群指的是对于某一种运算*,满足以下四个条件的集合G:(1)封闭性:若a,b∈G,则存在唯一确定的c∈G,使得a*b=c;(2)结合律成立:任意a,b,c∈G,有(a*b)*c=a*(b*c);(3)单位元存在:存在e∈G,对任意a∈G,满足a*e=e*a=a,称e为单位元,也称幺元;(4)逆元存在:任意a∈G,存在唯一确定的b∈G,a*b=b*a=e(单位元),则

4、称a与b互为逆元素,简称逆元,记作a^(-1)=b.通常称G上的二元运算*为“乘法”,称a*b为a与b的积,并简写为ab。若群G中元素个数是有限的,则G称为有限群。否则称为无限群。有限群的元素个数称为有限群的阶。1.3群论在各领域的应用参考资料word文档整理分享群论是近代数学的一个分支,它是研究群的结构及其应用的数学理论。是一门比较抽象的数学学科。因为它可以用于基本粒子、核结构、原子结构和晶体结构等许多学科的各个方面,因此它已成为近代理论研究的很重要的工具,如:在分子结构测定中,需要测定有关晶体结构、红外光谱、偶极距、旋光性等,这些性质主要是由分子

5、的对称性决定的,而分子对称性的研究是以运用群论为基础的[3]。认识物质结构的最重要的理武器是《量子力学》,它对化学的应用便形成了《量子化学》,而群论架起了分子对称性和量子力学之间联系的桥梁。鉴于描述电子运动状态的波函数必须构成分子所属点群的不可约表示的基,所以从分子的对称性出发,运用群论的方法,有助于解决结构化学和量子化学中的许多问题[4]群论在化学方面的应用很广泛,在应用于原子、分子结构问题上,但是它不能回答它们的所有结构问题,只能在一定程度上解决与分子对称性有关的那一部分问题,解决其它问题,还需要其它多方面的知识。科研工作者们也常常会遇到的很多工

6、程结构物或者机械零件往往具有很多对称性。在过去利用计算尺进行计算时为了减少计算工作量,总是尽量利用结构的对称性质。结构分析的电子计算机方法出现之后,过去手算不能完成的高次超静定结构现在也能解算出精确的解答了。但是随着题目越来越允未知数个数很多,.存储量又显得不够了。而且人们已经不满足于计算一个具体结构,而是进一步作设计,此时需要修改尺寸反复进行计算,计算工作也成为一个大问题了。另外,原始数据的穿孔也使人感到厌烦而容易出错。在这样的条件下结构对称性的利用又具有很大的兴趣了。对于空间结构的分析这个问题就变得比较突出。空间结构一般未知数很多,采用条形矩阵的

7、存储带宽也比较大。存储量的消费比较大,计算工作量也很大,一般的小型计算机就解算不了。而且原始数据的准备也要用掉许多功夫。考虑到空间结构往往具有很多对称性,利用这些条件,可以得到很大利益。过去在结构力学中谈到对称性,往往都是指镜像对称,或者是完全的轴对称。但是现在有一些杆系空间结构,它既没有宪全的轴对称,然而也不止单纯是一个镜像对称而已。对于这样一类对称性结构的分析就应当利用“群论”这个数学工具。利用群论来分析对称性在量子力学中早就应用了,但是在结构分析中还很少见到应用。但一些科研工作者还是采用了群论的数学工具,利用电子计算机解算了一些空间结构的课题[

8、6]。可见,群论在结构分析中也能得到相应的应用。近年来,有人试图将群论引入到网络理论中,曾得到了一些结果。还

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。