资源描述:
《Jeffrey B. Remmel---Generating Functions for Alternating Descents and Alternating major index.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Ann.Comb.16(2012)625–650AnnalsofCombinatoricsDOI10.1007/s00026-012-0150-9PublishedonlineMay6,2012©SpringerBaselAG2012GeneratingFunctionsforAlternatingDescentsandAlternatingMajorIndexJeffreyB.RemmelDepartmentofMathematics,UniversityofCalifornia,SanDiego,LaJolla,CA92093-0112,USAjremmel@ucsd.eduRe
2、ceivedDecember22,2009MathematicsSubjectClassification:05A05,05A15,05E05Abstract.In2008,Chebikinintroducedthealternatingdescentset,AltDes(σ),ofapermu-tationσ=σ1···σninthesymmetricgroupSnasthesetofallisuchthateitheriisoddandσi>σi+1oriisevenandσi<σi+1.Wecanthendefinealtdes(σ)=
3、AltDes(σ)
4、andaltmaj(σ)
5、=∑i∈AltDes(σ)i.Inthispaper,wecomputeageneratingfunctionforthejointdistri-butionofaltdes(σ)andaltmaj(σ)overSn.OurformulaissimilartotheformulaforthejointdistributionofdesandmajoverthesymmetricgroupthatwasfirstprovedbyGessel.WealsocomputesimilargeneratingfunctionsforthegroupsBnandDnandforr-tuplesof
6、permutationsinSn.Finallyweproveageneralextensionoftheseformulasincaseswherewekeeptrackofdescentsonlyatpositionsr,2r,....Keywords:alternatingdescents,alternatingmajorindex,symmetricfunctions1.IntroductionIfσ=σ1···σnisanelementofthesymmetricgroupSnwritteninonelinenotation,thenweletDes(σ)={i:σi>σi
7、+1}andRise(σ)={i:σi<σi+1}.ForanystatementA,wesetχ(A)=1ifAistrueandχ(A)=0ifAisfalse.Thenweshallconsiderthefollowingpermutationstatistics:des(σ)=
8、Des(σ)
9、,ris(σ)=1+
10、Rise(σ)
11、,maj(σ)=∑i,comaj(σ)=n+∑i,i∈Des(σ)i∈Rise(σ)inv(σ)=∑χ(σi>σj),coinv(σ)=∑χ(σi>σj).1≤i12、tationsinSn,wedefinethecommondescentsetofσ(1),...,σ(s)byComdesσ(1),...,σ(s)=i:σ(j)>σ(j)forj=1,...,sii+1626J.B.Remmelandweletcomdesσ(1),...,σ(s)=
13、Comdesσ(1),...,σ(s)
14、andcommajσ(1),...,σ(s)=i.∑i∈Comdes(σ(1),...,σ(s))ThesetypesofstatisticshavebeenstudiedbyCarlitz,Scoville,andVaughaninthe1
15、970’sandrevisitedbyFedouandRawlingsinthe1990’s[10,11,14,15].Chebikin[12]definedthealternatingdescentsetofapermutationσ=σ1···σnbyAltDes(σ)={2i:σ2i<σ2i+1}∪{2i+1:σ2i+1>σ2i+2}.(1.1)Wethendefinealtdes(σ)=
16、AltDes(σ)
17、,andaltmaj(σ)=∑i.i∈Alt