资源描述:
《Williams---A conjecture of Stanley on alternating permutations.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ACECTUREFSTAEYATERATGERUTATSRBCHAAADAURE.WASAbstra
t.Wegivetwosimpleproofsofa
onje
tureofRi
hardStanley
on
erningtheequidistributionofderangementsandalternatingpermutationswiththemaximalnumberofxedpoints.1.ntrodu
tionWewrite[n]={1,...,n}andSn
2、forthesetofpermutationsof[n].Apermu-tationisalternatingifa1>a2a4<....Similarly,denewtobereversealternatingifa1a3....n[2℄,Ri
hardStanleyusedthetheoryofsymmetri
fun
tionstoenumeratevarious
lassesofalternatingpermutationswof{1,2,...n}.ne
lassthathe
onsideredwereal
3、ternatingpermutationswwithaspe
iednumberofxedpoints.∗Writedk(n)(respe
tively,dk(n))forthenumberofalternating(respe
tively,reversealternating)permutationsinSnwithkxedpoints.Asobservedin[2℄,itisnothardtoseethatmax{k:dk(n)6=0}=⌈n/2⌉,n≥4max{k:d∗(n)6=0}=⌈(n+1)/2⌉,n≥5.kStanley
o
4、nje
turedthefollowingin[2℄.Conje
ture1.[2,Conje
ture6.3℄etDndenotethenumberofderangements(permutationswithoutxedpoints)inSn.Thend⌈n/2⌉(n)=D⌊n/2⌋,n≥4∗d⌈(n+1)/2⌉(n)=D⌊(n−1)/2⌋,n≥5.arXiv:math/0702808v3[math.CO]18May2007nthisnotewewillgivetwoproofsofhis
onje
turerelatingthenum
5、berofderangementstothenumberofalternatingpermutationswiththemaximalnumberofxedpoints.Bothproofsusethesamebije
tionΨ.Therstproofworksdire
tlywithpermutationsandshowsthatΨisinje
tiveandsurje
tive.These
ondproofworkswithpermutationtableaux,
ertaintableauxwhi
harenaturallyinbij
6、e
tionwithpermutations,andexpli
itly
onstru
tstheinversetoΨ.Thebije
tion(foralternatingpermutations)isillustratedinFigure1,intermsofbothpermutationsandpermutationtableaux.Date:February2,2008.eywordsandphrases.alternatingpermutations,derangements,e-tableau,permutationtableau
7、x.2RBCHAAADAURE.WAS314243212143423186755231867482645371431234212413826451736284537132845176412334122341823154766284517332548671Figure1.Thebije
tionΨforn=82.ThefirstproofAswewillshowsubsequently,themain
asethatoneneedsto
onsider
on
ernsalternatingpermutationsona
8、nevennumberofletters.Theorem2.Forea
hnonnegativeintegermdm(2m)=Dm.r