基于复杂网络演化模型分析

基于复杂网络演化模型分析

ID:35136305

大小:2.90 MB

页数:74页

时间:2019-03-20

基于复杂网络演化模型分析_第1页
基于复杂网络演化模型分析_第2页
基于复杂网络演化模型分析_第3页
基于复杂网络演化模型分析_第4页
基于复杂网络演化模型分析_第5页
资源描述:

《基于复杂网络演化模型分析》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、m}◆r≈分类号UDC注1密级.18I‘088学位论文复杂网络演化模型分析(题名和副题名)崔爱香(作者姓名)指导教师姓名傅彦教授1尊导电子科技大学成都(职务、职称、学位、单位名称及地址)申请专业学位级别硕士专业名称计算机软件与理论论文提交日期2010.04论文答辩日期2010.05学位授予单位和日期电子科技大学答辩委员会主席评阅人年月日注1:注明《国际十进分类法UDC》的类号。纠:一:支.:I●独创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。据我所知,除了文中特别加以标注和致谢的地方外,论文中不

2、包含其他人已经发表或撰写过的研究成果,也不包含为获得电子科技大学或其它教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。签名:肇塾垄日期:加.。年巧月万日论文使用授权本学位论文作者完全了解电子科技大学有关保留、使用学位论文的规定,有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅。本人授权电子科技大学可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。(保密的学位论文在解密后应遵守此规定)

3、签名:—竖导师签名:日期:讪Io●h一簟刚■摘要近年来,复杂网络的研究受到越来越多的关注。对复杂网络结构演化规律的实证分析,以及相应的建模研究,是充分认识一切有关复杂网络的功能与应用的基础。通过对复杂网络演化模型的研究,人们可以捕捉到网络形成的动态特性,准确获得各种微观机制对网络结构的影响,对掌握网络功能及其动力学行为有着极其重要的作用。在复杂网络演化模型研究的早期,绝大部分模型都只关注网络的主要宏观性质,例如无标度特性和小世界效应。仅仅从宏观性质出发,难以给出对不同演化机制的可信的评估。深入挖掘网络细致的统计性质,特别是局部结构

4、特性,并利用这些统计性质对己知演化机制进行更严格更准确的评估,是网络演化建模研究向前发展的必然趋势。随着对复杂网络演化模型研究的深入,近年来,研究的焦点开始转移到更为细致的网络局部结构,例如对网络中模块、环、紧密子图等结构的统计分析。集团度是典型的用于刻画节点局部环境的指标,实证研究表明大量真实网络都表现出幂律的集团度分布,这一新的统计特性为复杂网络演化模型的研究提供了新的比较平台,但目前还没有简单的机制能够再现这种分布形式,特别是分布指数随集团阶数下降的性质。寻找可能表征部分真实网络的演化规律并建立相应模型,一直是推动复杂网络演

5、化模型研究的根本动力。本文重点围绕度分布、簇系数、平均路径长度、集团度分布等目前公认的网络基本特征,对复杂网络的拓扑特征、演化机制和演化模型进行了研究,提出了两个网络演化模型。第一个模型是对HK可调簇系数模型的改进。经典的HK可调簇系数模型实现小世界特性和无标度特性的统一,但该模型只考虑了演化网络的线性增长,忽略了加速增长这一重要因素,生成的网络不具有低阶集团度幂律分布的特性。加速增长是网络演化过程中的重要因素,在很大程度上影响网络的结构和度分布。在改进的模型中,网络的总连接数随着网络规模呈指数形式的加速增长,这种加速增长主要源于

6、网络演化过程中新节点加入时与老节点之间建立的连接。数值模拟显示,改进的模型不仅具有HK可调簇系数模型的所有统计特性,而且还涌现了原模型不具有的低阶集团度幂律分布特性。改进的HK可调簇系数模型更接近真实网络,有利于更好地认识真实网络中的基元。第二个是共同邻居驱动的网络加速演化模型,考虑了真实网络中广泛存在的摘要共同邻居驱动和加速增长,这种加速增长主要源于老节点内部的连边。该模型提出一种全新的演化机制——共同邻居驱动,两个未连接的节点产生连边的概率正比于这对节点的共同邻居数,共同邻居数目越多建立连接的可能性越大。数值模拟显示本模型能够

7、很好地再现实际观察到的幂律集团度分布,且指数变化规律与实际观察完全一致。该模型提出的机制符合我们对真实网络的认知,具有广泛的解释力,提供了研究网络局部结构形成机制的范例,暗示共同邻居驱动和加速增长是复杂网络局部结构形成的内在机制。关键词:复杂网络,网络演化,加速增长,共同邻居,集团度分布lIABSTRACTInrecentyears,mestudyofcomplexnetworkhasat觚ctedmorea堇1dmorea仕e11tion.EmpiricalanalySison也eev01utionofcompleXnet、)I

8、,orks仃ucnlreandt11ecorrespondingstlldyofmodelingaretllef.oundationto向11yunderStaIldallmemnctionsaIldapplicationofconlpleXne铆

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。