欢迎来到天天文库
浏览记录
ID:35041775
大小:3.05 MB
页数:58页
时间:2019-03-16
《人工蜂群算法在多目标模糊投资组合优化中的应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、?1I脅命巧详貿養火#nversBusinessCapitalUiityfEconomicsandoI硕±学位论文Thesisfo「DegreeofMaster论文题目:人工蜂群算法在多目标模糊投资组合优化中的应用、/管理科学与工程专||:22013070509:学号;葛梦瑶作者陈巧教授指导教师:?克成时间;2016年5月31日独创性声明本人郑重声明:今所呈交的《人王绛群算法在多目标模鞠投资组合优化中的应用》论文是我个人在导师指导下进行的研究工作及取得的科研成果。尽我所
2、知文中除了特别加W标注和致谢的地方外论文中不,,包含其他人已经发表或撰写的内容及科研成果,也不包含为获得首都经济贸易大学或其它教育机构的学位或证书所使用过的材料。擔《勢I三作者签名:日期:口八年月曰关于论文使用授权的说明本人完全了解首都经济贸易大学有关保留、使用学位论文的有关规定,即:学校有权保留送交论文的复印件允许论文被查阅、借阅或网,络索引;学校可k乂公布论文的全部或部分内容,可レ乂采取影印、缩印或其它复制手段保存论文。(保密的论文在解密后应遵守此规定)作者签名:导师签名:日期:年左月日声、石一首都经济贸易大学硕士学位论文TH
3、ESISOFDOCTOR(MASTER)DEGREE论文题目:人工蜂群算法在多目标模糊投资组合优化中的应用院系:信息学院专业:管理科学与工程学号:22013070509作者:葛梦瑶指导教师:陈炜教授完成日期:2016年5月31日摘要金融市场是一个复杂的、充满了各种不确定性的系统,如何在各种复杂的、不确定性的金融环境中对资本进行有效配置,实现投资收益与风险均衡将是金融机构与个人投资者所要面临的重要问题。在金融市场中不确定性主要表现为随机性和模糊性。在很多情形下,投资者往往并不能够准确地预测资产收益的概率分布,其对收益和风险的描述通常也只能用一些模糊概念来概括,这就使得资产收益在
4、很大程度上表现为模糊不确定性。因此,为了很好的解决金融市场模糊不确定问题,我们将在可能性理论框架下讨论投资组合优化问题。随着学者对投资组合理论研究的不断深入,研究发现投资组合模型中用方差来度量投资风险并不能很好的描述投资者对于风险的定义,同时已有研究表明金融资产的收益率通常情况下并不服从正态分布,其收益率的分布特征往往是非对称的。当资产收益率不服从正态分布时,仅用资产的均值和方差并不能很好的刻画资产收益的分布特征。为了克服均值-方差模型存在的不足,本文将基于资产的收益、半绝对偏差风险函数及收益率分布的偏度特征来研究投资组合优化问题。与此同时,在现实的证券市场中,流动性作为证券
5、市场存在的基础和前提,是金融市场的重要属性,而在买卖证券的交易过程中也总是存在着如税收、交易成本、交易量限制、红利等摩擦因素,已有研究表明忽略金融资产的交易费用将导致无效的投资决策。因此,本文将在可能性理论框架下综合考虑金融资产的收益、风险、偏度分布特征,同时在模型中又考虑了流动性约束及证券的交易费用、资产比例上下限、不能卖空等现实因素,进而构建了考虑流动性约束及交易费用的均值-半绝对偏差-偏度的多目标模糊投资组合优化模型。由于多目标投资组合优化问题是一类非常复杂的优化问题,并且该问题亦被证实是组合优化问题中的NP-Hard问题,其计算都较为复杂,难以使用常规的方法求解。本文
6、将针对提出的约束多目标投资组合优化模型设计一种改进的多目标人工蜂群算法,具体包括以下三方面改进:混沌初始化种群、改进雇佣蜂的搜索行为、外部种群的更新及保存策略。最后将改进的多目标人工蜂群算法与几种经典多目标优化算法进行性能比较,从而验证模型的实用性及算法的有效性。关键词:投资组合优化问题;可能性理论;约束多目标;人工蜂群算法IAbstractFinancialmarketsareacomplicatedanduncertainsystem.Inthiscomplexanduncertainfinancialenvironment,theinvestmentinstitutio
7、nsandindividualinvestorswillbefacedwithhowtorealizetheeffectiveallocationofcapitalandtheyalsoprospecttomaximizethebenefitsandriskminimizationofequilibriumbalance.Inmanycases,investorsareoftennotabletoaccuratelypredicttheprobabilitydistributionofassetretu
此文档下载收益归作者所有