Learning with Uncertain Kernel Matrix Set.pdf

Learning with Uncertain Kernel Matrix Set.pdf

ID:34973989

大小:836.05 KB

页数:19页

时间:2019-03-15

Learning with Uncertain Kernel Matrix Set.pdf_第1页
Learning with Uncertain Kernel Matrix Set.pdf_第2页
Learning with Uncertain Kernel Matrix Set.pdf_第3页
Learning with Uncertain Kernel Matrix Set.pdf_第4页
Learning with Uncertain Kernel Matrix Set.pdf_第5页
资源描述:

《Learning with Uncertain Kernel Matrix Set.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、JiaL,LiaoSZ,DingLZ.Learningwithuncertainkernelmatrixset.JOURNALOFCOMPUTERSCIENCEANDTECH-NOLOGY25(4):709{727July2010.DOI10.1007/s11390-010-1055-xLearningwithUncertainKernelMatrixSetLeiJia(贾磊),Shi-ZhongLiao¤(廖士中),Member,CCF,andLi-ZhongDing(丁立中)SchoolofComputerScienceandTechnology,TianjinUniversi

2、ty,Tianjin300072,ChinaE-mail:fljia,szliao,dinglizhongg@tju.edu.cnReceivedMay15,2009;revisedFebruary9,2010.AbstractWestudysupportvectormachines(SVM)forwhichthekernelmatrixisnotspeci¯edexactlyanditisonlyknowntobelongtoagivenuncertaintyset.Weconsideruncertaintiesthatarisefromtwosources:(i)datamea

3、surementuncertainty,whichstemsfromthestatisticalerrorsofinputsamples;(ii)kernelcombinationuncertainty,whichstemsfromtheweightofindividualkernelthatneedstobeoptimizedinmultiplekernellearning(MKL)problem.Muchworkhasbeenstudied,suchasuncertaintysetsthatallowthecorrespondingSVMstobereformulatedass

4、emi-de¯niteprograms(SDPs),whichisverycomputationallyexpensivehowever.OurfocusinthispaperistoidentifyuncertaintysetsthatallowthecorrespondingSVMstobereformulatedassecond-orderconeprograms(SOCPs),sinceboththeworstcasecomplexityandpracticalcomputationale®ortrequiredtosolveSOCPsisatleastanorderofm

5、agnitudelessthanthatneededtosolveSDPsofcomparablesize.Inthemainpartofthepaperweproposefouruncertaintysetsthatmeetthiscriterion.Experimentalresultsarepresentedtocon¯rmthevalidityoftheseSOCPreformulations.Keywordssupportvectormachine,kernelmatrix,uncertainty,second-orderconeprogram1Introductionk

6、nowledgeofit.AllthatisknownaboutthekernelmatrixisthatitbelongstoagivenuncertaintysetU.Kernelmethods[1-2],suchassupportvectorma-Theuncertaintiesmayarisefromvarioussourcesandchines(SVM)[3-5],areaclassofalgorithmswhichhavearedi±culttohandle.Typically,therearetwocases:proventobeverypowerfulandvers

7、atileformachineCase1.Thekernelmatrixisestimatedfromsamplelearningproblems.Thesemethodsworkbyembeddingdata,andis,therefore,subjecttomeasurementnoisethedataintoaHilbertspace,andsearchingforlinearandstatisticalerrors.Inthiscase,astheuncert

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。