欢迎来到天天文库
浏览记录
ID:34932852
大小:108.93 KB
页数:18页
时间:2019-03-14
《Lattice Boltzmann Models for Axisymmetric Flows.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、LatticeBoltzmannModelsforAxisymmetricFlowsTimPhillipsCardi®UniversityCollaborator:TimReis(UniversityofOxford)Cardi®LBMWorkshop3-4September2009MotivationIStandardLBMforincompressible°owsisbasedontheCartesiancoordinatesystemIManyimportant°owproblemspossessaxialsy
2、mmetrye.g.°owpastasphereIComputationaldemandfor3DLBMsisconsiderablygreaterthanfor2DLBMsIReductionindimensionalityallowsforgreaterspatialre¯nementRationaleITheideaistoaddsuitablesourcetermstotheLBGKevolutionequationtorecovertheaxisymmetricNavier-Stokesequationsi
3、nthemacroscopiclimit(Hallidayetal.(2001)).IPremnathandAbraham(2005)usedasimilarideaformultiphase°owstoaccountforaxisymmetriccontributionsoftheorderparameterofthe°uidphasesandinertial,viscousandsurfacetensionforcescf.continuumsurfaceforcemodelofBrackbilletal.(19
4、92).HistoricalOverviewIHallidayetal.(2001)proposedanaxisymmetricD2Q9modelforaxisymmetric°ows.Sometermsaremissinginthemodel-theNavier-Stokesequationsarenotrecoveredinthemacroscopiclimit.IPremnathandAbraham(2005)adoptasimilarapproachformultiphase°ows.IGuoetal.(20
5、02)presentageneralapproachforincorporatingforcingtermsintotheLBMframework-discretelatticee®ectsareconsidered.IReisandPhillips(2007)followthisapproachtoderiveanaxisymmetricLBM,whichwasvalidatedonsomebenchmarkproblems.IHuangetal.(2009)generalisetheseapproachestoi
6、ncludeproblemsforwhichthereisabodyterminthemomentumequationAxisymmetricFlowConsiderthe°owofanincompressible,isotropic°uidthroughathree-dimensionalpipe.Leter,eµandezbethestandardorthonormalunitvectorsde¯ningacylindricalcoordinatesystem:xyyxer=;;0;eµ=;¡;0;ez=
7、(0;0;1);(1)rrrrpwherer=x2+y2,x=rcosµandy=rsinµ.IfthesolutiontotheNavier-Stokesequationisoftheformu=ur(r;z)er+uz(r;z)ez;(2)thatisthevelocity¯elddoesnotdependonµ,thenthe°owissaidtobeaxisymmetric(withoutswirl).2DNavier-StokesEquationsThecontinuityequationincylindr
8、icalcoordinatesis@urur@uz++=0;(3)@rr@zandthecomponentsofthemomentumequationare:@ur@ur@ur1@P+ur+uz=¡(4)@t@r@z½@r22@ur1@urur@ur+º+¡+;@r2r@rr2@z2@uz@uz@uz1@P+ur+uz=¡(5)@t@r@z
此文档下载收益归作者所有