高作业知识梳理之四(导数及其应用技术)

高作业知识梳理之四(导数及其应用技术)

ID:34854104

大小:1.91 MB

页数:13页

时间:2019-03-12

高作业知识梳理之四(导数及其应用技术)_第1页
高作业知识梳理之四(导数及其应用技术)_第2页
高作业知识梳理之四(导数及其应用技术)_第3页
高作业知识梳理之四(导数及其应用技术)_第4页
高作业知识梳理之四(导数及其应用技术)_第5页
资源描述:

《高作业知识梳理之四(导数及其应用技术)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高三复习知识梳理之四:导数及其应用(含定积分)【考点综述】本部分的要求一般有三个层次:第一层次是主要考查导数的概念,求导的公式和求导法则,为基础层面;第二层次是导数的简单应用,包括求单调区间、函数的极值、证明函数的增减性等,为导数应用的重点层次,以求导考察单调性为突破口;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式和函数的单调性等有机地结合在一起,设计综合题,通过将新课程内容和传统内容相结合,加强了能力考查力度,使试题具有更广泛的实际意义,体现了导数作为工具分析和解决一些函数性质问题的思想方法,这类问题用传统教材是难以甚至无

2、法解决的;为导数应用的较高层次,用于设计压轴题,突出导数应用的灵活性与思想方法的交汇性。预测:重点放在第二层次,已向第三层次进军(还常设计压轴题)!即:考查对导数本质的理解和计算,并力求结合应用问题,已经表现出逐步加深与综合考查的趋势,如已涉及理论探讨和较为严格的逻辑证明。矚慫润厲钐瘗睞枥庑赖。【重点知识】1.平均变化率及瞬时变化率:(1)函数f(x)从x1到x2的平均变化率:(2)函数f(x)在x0处的瞬时变化率:==2.导(函)数的定义:(1).在点x0处可导存在、都存在且相等。(2).在一点x=x0处的导数为==(3).若对任意都有=成立,则函

3、数在区间上可导;在端点a、b处判断是否可导的方法是:若存在,则在(a,b]上可导;若在存在,则在[a,b)上可导;若,都存在,则在[a,b]上可导。聞創沟燴鐺險爱氇谴净。注:新课标对极限要求降低,上述定义涉及的极限表达式仅供理解定义本质时作参考。3.基本初等函数的导数公式①为常数);②但不为零);③;④;⑤;⑥;⑦;⑧4.导数的四则运算法则若的导数都存在,则:①;②为常数);③;特别地,;④5.复合函数求导公式(课本20~21页)(1)复合层次的划分:对较为复杂函数准确求导的前提是:会熟练地进行复合函数层次的划分。以基本初等函数作为划分基本层次的标准

4、。基本初等函数有以下六类:①常函数;②指数函数;③对数函数;④幂函数为常数);⑤三角函数;⑥反三角函数(略)。残骛楼諍锩瀨濟溆塹籟。(2)求导法则设,则。例如:①求导:②已知函数在R上满足,则曲线在点处的切线方程是.6.抽象函数求导问题如:①设函数在上的导函数为,且,下面的不等式在上恒成立的是()A.B.C.D.②已知对任意实数,有,且时,,则时()A.B.C.D.【重点结论】1.求导与单调性:若函数在区间I上可导,且使的点x仅有有限个,则在区间I上为严格递增(减)函数的充要条件为:对一切有例如:①已知函数在R上是减函数,求a的取值范围。②已知函数f

5、(x)=在(-2,+∞)内单调递减,求实数a的取值范围。13/132.求导与极值:(课本27~28页)若当时且当时,则为在上的极大(小)值。注意:(1)正确理解极值定义:(2)极值也可能在不可导点取得,如:在处取得极小值,但是不可导。(3)驻点即满足的点不一定是取得极值的点,如:在点处。综上,满足的点是此点是极值点的既不充分也不必要条件。例如:①函数的极值点是()A、x=2B、x=-1C、x=1或-1或0D、x=0②求的极值点。③已知函数的导数,若在处取到极大值,则的取值范围是。(状元之路50页5)3.求导与几何意义:以曲线上一点为切点的切线方程是(

6、1)注意鉴别:“过曲线上一点的切线”与“在曲线上一点处的切线”的区别:“在曲线上一点处的切线”是指以此点为切点的切线,而“过曲线上一点的切线”只表示曲线的切线过“此点”,但是“此点”不一定就是切点!例如:酽锕极額閉镇桧猪訣锥。①已知曲线,则过点P(2,4)的切线方程是。(状元之路44页)练习:已知曲线上一点求过点P的切线方程。(2)利用导数的几何意义识图:如已知函数的导函数的图象如下图,那么的图象可能是()4.定积分重点结论(1)定义式;(2)面积与定积分的关系:①若,则;若则;②若,则。(面积与定积分的转化)“面积”与几何意义、物理意义(变力做功、

7、位移等)均有密切关系。(3)微积分基本定理:=F(b)-F(a);(用于计算,寻找原函数)(4)(用于分段)【典例分析】题型1求单调区间例1设函数,其中a>0。(1)求的单调区间;(2)解不等式≤1。题型2研究极值问题例2设函数f(x)=(a、b、c、d∈R)的图象关于原点对称,且x=1时,f(x)取极小值。(1)求a、b、c、d的值;(2)当x∈[-1,1]时,图象上是否存在两点,使得过此两点的切线互相垂直?试证明你的结论;(3)若x1,x2∈[-1,1]时,求证:

8、f(x1)-f(x2)

9、≤。13/13题型3导数与图象特征结合例3已知平面向量=(

10、,-1),=(,).(1)证明⊥;(2)若存在不同时为零的实数k和t,使=+(t2-3),=-k+t,⊥,试

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。