Statistical Learning Theory-Slides .pdf

Statistical Learning Theory-Slides .pdf

ID:34749661

大小:3.68 MB

页数:149页

时间:2019-03-10

Statistical Learning Theory-Slides .pdf_第1页
Statistical Learning Theory-Slides .pdf_第2页
Statistical Learning Theory-Slides .pdf_第3页
Statistical Learning Theory-Slides .pdf_第4页
Statistical Learning Theory-Slides .pdf_第5页
资源描述:

《Statistical Learning Theory-Slides .pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、StatisticalLearningTheoryMachineLearningSummerSchool,Kyoto,JapanAlexander(Sasha)RakhlinUniversityofPennsylvania,TheWhartonSchoolPennResearchinMachineLearning(PRiML)August27-28,20121/130ReferencesPartsoftheselecturesarebasedonLO.Bousquet,S.Boucheron,G.Lugosi:Introd

2、uctiontoStatisticalLearningTheory",2004.LMLSSnotesbyO.BousquetLS.Mendelson:AFewNotesonStatisticalLearningTheory"LLecturenotesbyS.Shalev-ShwartzLLecturenotes(S.R.andK.Sridharan)http://stat.wharton.upenn.edu/~rakhlin/courses/stat928/stat928_notes.pdfPrerequisites:ab

3、asicfamiliaritywithProbabilityisassumed.2/130OutlineIntroductionStatisticalLearningTheoryTheSettingofSLTConsistency,NoFreeLunchTheorems,Bias-VarianceTradeo ToolsfromProbability,EmpiricalProcessesFromFinitetoIn niteClassesUniformConvergence,Symmetrization,andRademac

4、herComplexityLargeMarginTheoryforClassi cationPropertiesofRademacherComplexityCoveringNumbersandScale-SensitiveDimensionsFasterRatesModelSelectionSequentialPrediction/OnlineLearningMotivationSupervisedLearningOnlineConvexandLinearOptimizationOnline-to-BatchConversi

5、on,SVMoptimization3/130Example#1:HandwrittenDigitRecognitionImagineyouareaskedtowriteacomputerprogramthatrecognizespostalcodesonenvelopes.Youobservethehugeamountofvariationandambiguityinthedata:Onecantrytohard-codeallthepossibilities,butlikelytofail.Itwouldbeniceif

6、aprogramlookedatalargecorpusofdataandlearnedthedistinctions!ThispictureofMNISTdatasetwasyankedfromhttp://www.heikoho mann.de/htmlthesis/node144.html4/130Example#1:HandwrittenDigitRecognitionNeedtorepresentdatainthecomputer.Pixelintensitiesisonepossibility,butnotnec

7、essarilythebestone.Featurerepresentation:1.15.36.22.92.3..featuremap.Wealsoneedtospecifythelabel"ofthisexample:3".Thelabeledexampleisthen1.15.3(6.22.92.3..(.,3Afterlookingatmanyoftheseexamples,wewanttheprogramtopredictthelabelofthenexthand-writtendigit.5/130Examp

8、le#2:PredictTopicofaNewsArticleYouwouldliketoautomaticallycollectnewsstoriesfromthewebanddisplaythemtothereaderinthebestpossibleway.Youwouldliket

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。